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Preface

The aim of this textbook is to introduce Atomic Force Microscopy to graduate
students and others wishing to learn about the subject from fundamental principles.
The original literature is fascinating but hard going for a newcomer; I had a hard
time trying to understand it myself. Therefore, this textbook was written in an
attempt to save other people's time by explaining the topics in a more easily
digestible manner.

The first chapter of this book covers instrumental aspects and summarizes some
basics like the harmonic oscillator and electronics. When discussing atomic force
microscopy in the subsequent chapters, the book concentrates on the principles
of the methods. This book arose from my previous book on scanning probe
microscopy and represents a substantial extension and revision of the part on AFM
of the prior book.

This book developed from a series of lectures which I gave at RWTH Aachen
University. To this end, it is mainly written with graduate students in mind.
However, since the treatment in the book goes more into greater depth than is
possible in a lecture, it is my hope that it will also be useful for professionals in the
field and may serve as a reference book in AFM laboratories.

This textbook is not a historical survey of the field, and no content in this book is
originally from me. I learned everything from the primary and secondary literature
and then reformulated it continuously in the course of teaching the subject. I was
largely able to resist including my own research in this book, so it does not include
any studies of epitaxy using the scanning tunneling microscope which I performed
over the past years, and no charge transport measurements at the nanoscale using
multi-tip scanning tunneling microscopy, which is my current research topic.

First of all, I would like to thank Vasily Cherepanov for his careful preparation
of most of the figures. Moreover, he was regularly my “sparring partner” when
discussing issues which were not clear to me. These discussions helped me a lot in
furthering my understanding. I would like to thank Gerhard Meyer, who introduced
me to scanning probe microscopy in 1990 and has helped me since then in various
circumstances. Also many thanks to Josef Myslivecek for explaining the lock-in
technique to me so clearly that I included it here in exactly the way he explained it
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to me. Irek Morawski introduced me to the FM-AFM technique and the quartz
sensors.

I would like to thank my former students Anna Strozecka, Stefan Korte, Martin
Scheufens, Martin Lanius, Marcus Blab, Sven Just, Richard Spiegelberg, Felix
Lüpke, and Arthur Leis for intense discussions on various topics and for supplying
material from their work. I am grateful to Helmut Stollwerk and Peter Coenen for
their continuous support over the years.

I would also like to thank my son Felix for his help in typesetting some of the
equations in LATEX. My son Paul helped me to solve some equations using a
computer algebra system.

I would like to stay in contact with readers via the webpage www.mprobes.com/
AFMbook. On this page, supplementary material as well as errata will be posted.

Finally, it is my hope that this book will enable the reader to operate an atomic
force microscope successfully and understand the data obtained with the
microscope.

Jülich/Aachen, Germany Bert Voigtländer
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Chapter 1
Introduction

In many areas of science and technology there is a trend toward the nanoscale or
even the atomic level. For instance, electronics is already undergoing a transition
from microelectronics to nanoelectronics. As transistors with critical dimensions in
the the single digit nanometer range are now in production, consumer electronics
products contain now real nanoelectronic devices. Also in many other areas the
progress toward the nanoscale is under way.

An additional reason for the trend toward the nano/atomic scale is that material
properties are ultimately determined by the atomic structure. In order to understand
material properties fundamentally it is necessary to go down to the nano or atomic
scale. However, since the atoms are very small 60years ago most people thought
that it will probably never be possible to have direct access to materials on this scale
(Fig. 1.1).

The founding father of nanoscience and nanotechnology was R.P. Feynman. In
a visionary talk in 1959 he postulated the possibility of nanotechnology down to
the very atoms. In his talk entitled “There is Plenty of Room at the Bottom” he did
not use the word “nanotechnolgy” [1] since it had not been coined but he had the
idea. This was very visionary in 1959 and he was not really certain so he phrased
his vision in rhetorical questions and added some conditions. He reassured himself
with his words [2]:

But I am not afraid to consider the final question as to whether, ultimately – in the great
future – we can arrange the atoms the way we want; the very atoms, all the way down!

…when we have some control of the arrangement of things on the small scale we will get an
enormously greater range of possible properties that substances can have, and of different
things that we can do.

What couldwedowith layered structureswith just the right layers?Whatwould the properties
of materials be if we could really arrange the atoms the way we want them?

Feynman saw the potential of nanotechnology already in 1959 before anyone else
did. Now 60years later it is interesting to see how many of his predictions have been
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realized. In some cases things have been realized in a much simpler fashion than he
envisaged. To position things on the nanoscale he envisaged a cascade of machines
of decreasing size, each driving the next smallest one. As was discovered in 1990, it
is possible to go all the way down to the nanoscale and build structures out of atoms
in just one step from the macroscale to the atomic scale using a scanning tunneling
microscope (STM) [3–6]. As an example Fig. 1.2 shows the word NANO built from
single C60 molecules using an STM.

Feynman envisaged that nanotechnolgy is possible in principle and would be
very useful, but at that time the technology for imaging and controlling matter at
the nanoscale had not been invented. With improvements in electron microscopy, it
became possible to image matter on the nanoscale. After the invention of scanning
probe microscopes those microscopes became quickly another important method for
nanoscale imaging. In scanning probe microscopy, a small probe is used to detect
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Fig. 1.2 The word NANO assembled from single C60 molecules by lateral motion with a scanning
tunneling microscope (letter size: 15 × 15nm2)

the local properties at a surface or interface down to nanometer/atomic resolution.
By scanning a grid of points on the surface, the detected properties can be mapped
and are usually represented as an image. Most frequently in image of the topography
of the sample is generated, however, also images of several other properties can be
acquired. Because of the scanning mechanism, all these techniques are summarized
as scanning probe microscopes (SPM). If the interaction between the probe and the
substrate is strong enough the substrate can be modified on the nanoscale.

The most striking property of this kind of microscope is that it provides resolution
down to the atomic scale in real space. Here is an analogy which shows the precision
of an SPM working with atomic resolution. Such instruments are about 10cm in
size and can image with a resolution of about 1Å, corresponding to a precision of
about 10−9 of its size. Scaling this precision of 10−9 up to macrosize dimensions
would correspond to using a pencil 1,000km in length to write letters from Cologne
(Germany) in a notebook in Rome (Italy) with 1mm resolution!

One important figure of merit in microscopy is the resolution. Figure1.3 com-
pares the resolution (right end of the boxes in Fig. 1.3) and the imaging ranges of
different types of microscopy. The resolution of the human eye reaches down to one
tenth of a millimeter. Ordinary optical microscopy (not any kind of super-resolution
microscopy) reaches to slightly better than one micrometer due to the limitations
set by the wavelength of visible light. Scanning electron microscopy (SEM) reaches
to about one nanometer [7]. Transmission electron microscopy (TEM) [8] is capa-
ble of a resolution in the atomic range as are the various types of scanning probe
microscopy.

While the resolution limit is important in microscopy also other characteristics
are essential. For instance, the time to obtain an image, the contrast mechanisms
(topography, chemical contrast …), the surface sensitivity, the working environment
(ambient, vacuum, liquid …), and last but not least the price of the microscope.
Each microscopy technique has its advantages and disadvantages for a particular
application. For instance, if information on the 3D topography of a surface is required
SPM with its excellent surface sensitivity is the method of choice. If, however,
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features below the surface, like e.g. dislocations, are to be imaged then TEM is more
useful. If quick imaging within a few minutes down to the nanoscale is required then
SEM should be used.

1.1 Scanning Tunneling Microscopy (STM)

The first kind of scanning probe microscope, the scanning tunneling microscope,
(STM) was invented in 1981/1982 by Binnig and Rohrer [9–11] who received the
Nobel prize in physics 1986 for this invention [12]. As STM is covered in detail in
another book [13], we introduce this method only briefly in this introduction.

A schematic of an STM,with finemetal tip used as a probe, is shown in Fig. 1.4a.A
voltage is applied between the tip and the (conducting) sample. The tip is approached
toward the sample surface until a current flows. A current (the tunneling current) can
be detected shortly before tip and sample come into direct contact. This happens
at distances between tip and sample of the order of 0.5nm. The tunneling cur-
rent increases monotonously with decreasing tip-sample distance. Thus, a certain
measured tunneling current corresponds to a specific tip-sample distance. Since the
tunneling current varies strongly (exponentially) with the tip-sample distance this
quantity can be used to control the tip-sample distance very precisely. We will see
later that a 20% change in the tunneling current corresponds to a change in the tip-
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Fig. 1.4 a Schematic of a scanning tunneling microscope (STM). b STM image of the Si(111)
surface. Individual atoms are observed as yellow dots. The rhombic unit cell is indicated by white
lines. Besides the periodic arrangement of the atoms also defects such as single missing atoms can
be observed

sample distance of only 0.1Å. The tip is positioned with such high accuracy using
piezoelectric actuator elements. The mechanical extension of this actuator elements
is proportional to the voltage applied to their electrodes. In this way, the tip can be
moved in x , y and z directions with sub-ångström precision.

While the tip is scanned along the surface in x and y directions, a feedback
mechanism constantly adjusts the tip-sample distance by approaching or retracting
the tip or the sample to a distance at which the tunneling current remains constant
at a preset setpoint value. If there is an atomic step at the surface, as shown in
Fig. 1.4a, and the tip approaches this step edge laterally during scanning, the tunneling
current will rise beyond the setpoint value due to the smaller distance between tip
and sample. As a reaction to this the feedback loop will generate a signal used to
retract the tip in order to maintain the constant tunneling current at its setpoint value,
corresponding to a specific tip-sample distance. The tip retraction is accomplished
by applying the electric feedback signal to the piezoelement which changes the tip-
sample distance. Recording the feedback signal (corresponding to the tip-sample
distance) as a function of the lateral position results in a map (or image) of the tip
height, which often corresponds to the surface topography of the sample surface.
While the feedback mechanism was explained here for the STM, the principle is the
same for all types of scanning probe microscopes. The tunneling current has just to
be replaced by the actual quantity sensed, e.g. the tip-sample force in atomic force
microscopy (AFM).

The interpretation of the tip height for constant tunneling current as the topography
of the surface is a first approximation. So-called electronic effects can change this
interpretation. A simplified example of this are atoms on a surface which have the
same height (of their nuclei) but their electronic properties are different in the sense
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that one atom has a “higher electrical conductivity” than the other. The atom with
the “higher conductivity” will appear higher (same tunneling current at a larger tip-
sample distance) while for the case of the “less conducting atom” the tip has to
approach closer to maintain the same tunneling current.

Figure1.4b shows an atomically resolved image of a Si(111) surface [11]. Single
silicon atoms are observed as yellow dots. The operation of an STMcan be visualized
experimentally by combining a scanning electron microscope (SEM) with an STM.
The SEM can be used to image the motion of the STM tip during scanning. A movie
of a scanning STM tip which is imaged while scanning with another microscope,
namely an SEM, can be accessed at http://www.fz-juelich.de/pgi/pgi-3/microscope.

The tunneling effect is a quantum mechanical effect. The tunneling junction
(sample-gap-tip) can be treated in different approximations. Here, we consider a
simple one-dimensional approximation in order to grasp the very important expo-
nential dependence of the tunneling current on the tip-sample distance.

In quantummechanics, electrons in a solid are described by a wave functionψ(r).
In the free electron approximation the wave function of an electron of energy E and
mass m is an oscillating complex function. The one-dimensional Schrödinger equa-
tion [14] in the presence of a constant potential V is solved by the (not normalized)
wave function

ψ(z) ∝ e±ikz, k =
√
2m

�2
(E − V ). (1.1)

Inside the solid (z < 0 in Fig. 1.5) the potential is constant and usually considered
to vanish (V = 0) and the wave function is an oscillating function. When drawing
this wave function, it should be remembered that this quantum mechanical wave
function is a complex function, which is difficult to draw. Therefore, usually only the
real or imaginary part is drawn, as in Fig. 1.5. The sinusoidal appearance of the real
or imaginary part of the wave function should not make us forget that the absolute
value |ψ(z)|2 of such a wave function eikz has the constant value of one for all z.

In the following, we consider the electrons in a solid with the highest energy (at
the Fermi level EF) and call this energy the particle energy E = EF = Eparticle. The
energy of these electrons at the Fermi level is lower than the energy of free electrons
(the vacuum energy). This energy difference is roughly the bonding energy of the
electrons inside the solid. If the Fermi energy were larger than the vacuum energy,
the electrons would leak out of the solid toward the vacuum. The minimum energy
needed to remove an electron from a solid is called the work function Φ, which is
shown graphically in Fig. 1.5a.

Thus, at a surface there is a barrier (work function) preventing the electrons from
leaving the solid to the vacuum level Evac. In classical mechanics, particles cannot
penetrate into a barrier which is higher than their energy. In quantum mechanics,
particles can penetrate into a region with a barrier higher than their energy. In the
vacuum region the term E − V has the value −Φ. Inserting this into (1.1) results
(after pulling

√−1 = i in front of the square root) in the following solution of the
Schrödinger equation in the region of the potential barrier

http://www.fz-juelich.de/pgi/pgi-3/microscope
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Fig. 1.5 a The top graph shows a potential barrier of height Evac for z > 0 and the energy of an
electron E = Eparticle = EF. The lower graph shows the real part of the electron wave function
with an exponential decay of the wave function in the vacuum region. b The top graph shows the
potential energy for a solid-vacuum-solid configuration. The lower graph shows the electron wave
function (real part) oscillating in front of the barrier, exponentially decaying inside the barrier and
again oscillating past the barrier

ψ(z) = ψ(0)e±i iκz = ψ(0)e∓κz, κ =
√
2m

�2
Φ. (1.2)

This corresponds to an exponentially decaying real wave function inside the barrier
(vacuum region), as shown in Fig. 1.5a. The exponentially rising solution in (1.2) is
discarded, as it grows to infinity for z > 0.

If after some distance d the vacuum is replaced by another solid this configura-
tion is already a one-dimensional model of the tunneling junction (electrode-gap-
electrode). A potential diagram for such a tunneling barrier is shown in Fig. 1.5b.
Since also inside the second solid the vacuum barrier is not present, the solution for
the wave function inside the second solid is again an oscillating wave. This means
that in quantum mechanics the electron has a finite probability in both metals. In the
square barrier model a barrier, of height Φ = Evac − EF and width d is considered.
In the course of the solution of the square barrier problem, the transmission coeffi-
cient for the wave function behind the barrier can be calculated. In the lowest order,
neglecting all reflections of the wave function at the barrier, the probability of an
electron being observed on the right side of the barrier is proportional to the absolute
square of the wave function at the end of the barrier |ψ(d)|2, which results according
to (1.2) as

|ψ(d)|2 = |ψ(0)|2e−2κd , κ =
√
2m

�2
Φ. (1.3)
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A transmission coefficient T can be defined in the lowest order as

T ≈ |ψ(d)|2
|ψ(0)|2 = e−2κd . (1.4)

The exact expression for the transmission coefficient can be found in [13, 14]. The
main characteristics are: The transmission coefficient decays exponentially with the
tip-sample distance d and decreases exponentially with the square root of the work
function. If we use the right electrode as the tip, the tip probes the probability density
of the electron states of the sample at distance d from the surface. It can be shown
[13] that the tunneling current is proportional to the transmission coefficient.

Evaluating (1.4) using the free electron mass for m and a typical value for the
work function of a metal (Φ ≈ 4.5 eV), 2κ is about 20nm−1. Thus, a variation of
the barrier thickness of 0.1nm (relative to 0.5 nm) results in a difference in the
transmission factor of an order of magnitude (∼7.4). Hence the tunneling current
increases by about an order of magnitude if the tip approaches by one Å to the
sample. This sensitivity in the tip-sample distance is the reason for the extremely
high vertical resolution of the STM which can reach the picometer regime. Atoms
on the tip which protrude only 2.5Å (about one atomic distance) less toward the
sample carry only a factor of 150 less current. This means that the majority of the
tunneling current is carried by the “last atom”, which also explains the very high
(ultimately atomic) lateral resolution of the STM. This is already all we will say here
about STM. More details can be found in [13].

1.2 Introduction to Atomic Force Microscopy

One disadvantage of STM is that it can be used only for conducting samples since
the tunneling current is the measured quantity. An atomic force microscope can also
be used on insulating samples. The atomic force microscope (AFM) is alternatively
known as the scanning force microscope (SFM). However, here we will use the more
commonname atomic forcemicroscope. Instead of the tunneling current, which is the
measured quantity in STM, in atomic force microscopy the force between the tip and
sample is measured. In Fig. 1.6, a qualitative sketch of the force between tip and sam-
ple is given as function of the tip-sample distance. Three different regimes can be dis-
tinguished.
(a) If the tip is far away from the surface the force between tip and sample is
negligible. (b) For closer distances an attractive (negative) force between tip and
sample occurs. (c) For very small distances a strong repulsive force between tip and
sample occurs. One problem with this behavior is that the tip-sample force which is
used as measured signal depends non-monotonously on the tip-sample distance, i.e.
for one value of the measured force in the attractive regime there are two tip-sample
distances, point 1 and point 2 on the force-distance curve in Fig. 1.6. Care has to
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silicon cantilever used in
atomic force microscopy
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be taken to work only on one of the branches left or right of the minimum in the
force-distance curve on which a monotonous force distance relation holds.

The force between tip and sample can be measured in a static mode using the
deflection of a cuboid shaped flat spring (called cantilever) featuring a tip at its end.
The cantilever acts as a spring and its deflection is proportional to the tip-sample
force. If the stiffness of the cantilever spring k (spring constant) is known, the force
between tip and sample can be determined bymeasuring the bending of the cantilever.
Hooke’s law gives Fspring = −kz, where Fspring is the spring force and z is the distance
the cantilever spring is bent relative to its equilibrium position without the sample
present. Figure1.7 shows a typical silicon cantilever used as a force sensor in atomic
force microscopy with a sharp tip (probe) at its end. The deflection of the lever is
measured for instance using a laser beam reflected from the back of the cantilever
into a split photodiode as shown in Fig. 1.8.
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In the static mode of operation, the surface contour is mapped while scanning
by changing the z-position of the tip or sample in such a way that the tip-sample
force and, correspondingly, the tip-sample distance are kept constant. The z-signal
maintaining a constant tip-sample distance is recorded as topography signal. In other
words: the feedback loop maintains a constant force between the tip and the sample
i.e. constant bending of the cantilever. The corresponding changes in the z-position
required to maintain a constant tip-sample distance (i.e. constant force) correspond
to the topography of the sample. If the measurements are performed in the repulsive
regime of the force-distance curve the operating mode is called contact mode. In this
case the last atoms of the tip are in direct contact with the surface atoms.

The atomic forcemicroscope can also be operated in amode known as the dynamic
mode with an oscillating cantilever. This dynamic mode can also be operated in the
attractive part of the tip-sample interaction. This mode of operation is called the non-
contact mode. This is important when imaging soft samples (for instance polymers
or biological samples), which would be destroyed by a strong repulsive tip-sample
interaction. In the dynamic mode, the cantilever is excited to vibrate close to its
free resonance frequency. When the atomic force microscope tip approaches the
surface, the interaction between tip and sample changes the resonance frequency of
the cantilever. The tip-sample force can be represented approximately by a second
spring acting in addition to the cantilever spring. This additional spring leads to a
change of the resonance frequency of the cantilever and correspondingly to a change
of the cantilever amplitude. This change in amplitude can be used as a detection
signal and can serve as the feedback signal for regulating the tip-sample distance.
The distance regulationwill be such that a constant amplitude and therefore a constant
force (actually force gradient, as we will see later) is provided.

The idea of scanning probe methods can be considered more generally. A local
probe is scanned over the surface which can detect physical or chemical properties
with high spatial resolution. These techniques are often called SXM techniques
where “X” stands for some specific interaction between tip and sample. Examples
are for instance scanning capacitance microscopy (SCM) [15], Kelvin probe force
microscopy (KPFM) [16], magnetic force microscopy (MFM) [17], and near-field
scanning optical microscopy (NSOM/SNOM) [18].
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1.3 A Short History of Scanning Probe Microscopy

It is a strange fact in the history of science that the scanning probe microscopy
was invented so late. Nobody was brave enough to dare to think so simple: Use
the blindman’s stick principle all the way down to the atomic scale! The principle
is so simple that there are several projects in which already pupils have built an
STM. All the technical ingredients for an SPM were invented long before 1981. The
piezoelectric effect was discovered at the end of the 19th century. The electronics for
the STM is also simple; just a function generator to scan and a feedback controller.
From 1930 on it would have been possible to build an STM as the scanning electron
microscope was invented around this time. But no one dared to do so. This may
be also an encouragement for your scientific carrier: be brave and visionary! Some
important and nevertheless simple things may not have been discovered yet.

Here is a short history of scanning probe microscopy:

• 1972 Development of the Topografiner by Young, Ward, and Scire (precursor of
the STM) [19].

• 1981 Construction of the first STM by Binnig et al. [9, 10].
• 1982 First image of the atomic structure of the Si(111)-(7×7) surface by Binnig
et al. [11].

• 1985 Invention of the atomic force microscope (AFM) by Binnig et al. [20].
• 1986 Nobel prize in physics for the invention of the STM awarded to Binnig and
Rohrer [12].

• 1987 Element-sensitive imaging of GaAs with the STM by Feenstra [21].
• 1989 AFM frequency modulation (FM) detection introduced by Albrecht, Grütter
et al. [22].

• 1990 Optical beam deflection method introduced by Meyer and Amer [23].
• 1990 First positioning of single atoms on a surface with a low temperature STM
by Eigler and Schweizer [3].

• 1993 Tapping mode in AFM introduced by Zhong et al. [24].
• 1995 First atomic resolution with an AFM by Giessibl [25].
• 1998 First vibrational spectroscopy with the STM by Stipe, Rezaei, and Ho [26].

More details on the early history of scanning probe microscopy can be found
in [27]. Today scanning probe microscopes are standard tools in materials science,
physics, chemistry, biology and engineering. Many thousands of these microscopes
are in operation worldwide, and they are as common and as popular as the scanning
electron microscopes.

1.4 Summary

• In scanning probe microscopy (SPM) a sharp probe tip is scanned over a surface
and properties of the surface are sensed at the nano scale or atomic scale.
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• Different kinds ofmicroscopes are used for nanoscale imaging (scanning and trans-
mission electron microscopes as well as scanning probe microscopes) and all have
their advantages and disadvantages in terms of resolution, working environment,
contrast mechanisms, time to obtain an image, and price.

• The atomic resolution in scanning tunneling microscopy (STM) results from the
exponential dependence of the tunneling current on the tip-sample distance.

• Atomic force microscopy (AFM) can be also applied to insulating samples. The
deflection of a small cantilever spring senses the force between tip and sample.

• In SPM, during scanning the height of the tip is adjusted by a feedback loop (and
recorded as the topography signal) such that the measured signal (i.e. tunneling
current or tip-sample force) and correspondingly the tip-sample distance is kept
constant.

• The optical beam deflection method is used to measure the cantilever deflection
in AFM. A laser beam is reflected from the back of the cantilever and a signal
measuring the cantilever deflection is detected by a split photodiode.

• In the dynamic operationmode of AFM, the cantilever oscillates and the resonance
frequency and subsequently the amplitude change due to the force between tip and
sample.
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Chapter 2
Harmonic Oscillator

In atomic force microscopy, vibrations play a central role in several areas. If, for
instance, an atomic force microscope rests on a table you might wonder what this
has to do with vibrations. However, floor vibrations with amplitudes of roughly
one tenth of a micrometer (100nm) have to be compared to an amplitude stability
of less than 0.01nm which is necessary for atomically resolved imaging in AFM.
Thus, the vibrational noise amplitude is about 10,000 times larger than the signal
to be measured. This means that knowledge about vibrations and vibration isolation
is essential for scanning probe methods. Another area where oscillations are an
important topic is dynamic atomic force microscopy. In the dynamic mode of atomic
force microscopy, a cantilever vibrating close to (or at) its resonance frequency is
used as a sensor. The simplest way to study vibrations is to study the harmonic
oscillator. In this chapter we will study the mechanical harmonic oscillator.

2.1 Free Harmonic Oscillator

The simplest example of a harmonic oscillator is a mass on a spring (Fig. 2.1). The
position to which gravity extends the spring in equilibrium is chosen as the point of
zero extension. The displacement relative to this point is called z. The force exerted
by the spring on the mass m during the oscillation is given by Hooke’s law as

F = −kz, (2.1)

with k being the spring constant. If the spring deflection has negative values (z < 0,
longer spring extension), the direction of the force is positive and vice versa. Thus,
the minus sign in (2.1) appears because the force exerted by the spring has a direction
opposite to the deflection z. Newton’s second law tells us that the equation of motion
for the mass m is
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16 2 Harmonic Oscillator

Fig. 2.1 The simplest
example of a harmonic
oscillator: a mass on a spring

m

m

z   0

z

k
k

F= -k z

0

ma = m
d2z

dt2
= mz̈ = F = −kz. (2.2)

An ansatz for the solution of the equation of motion (2.2) is z = cos(ω0t) with
ω0 being a parameter which has to be determined.1 We verify that this is a correct
solution by differentiating z two times:

dz

dt
= −ω0 sin(ω0t); d2z

dt2
= −ω2

0 cos(ω0t) = −ω2
0z. (2.3)

Formally (2.2) is solved if

ω0 =
√

k

m
. (2.4)

But what is the physical significance of ω0?We know that the cosine function repeats
itself if the argument is larger than 2π. Therefore, themassmakes (compared to t = 0)
one complete cycle of oscillation if ω0t = 2π. This time, we call the period of the
oscillation T , and ω0 is given by

ω0 = 2π/T . (2.5)

The angular frequency ω0 is the number of radians which the oscillation proceeds
per time, while the frequency f0 = 1/T is the number of oscillations per time (ω0 =
2π f0). Equation (2.4) tells us that if the mass is larger it takes a longer time for one
oscillation and if the spring constant is stronger the mass will move more quickly.
This frequencyω0 at which the harmonic oscillator oscillates is also called the natural
frequency of the oscillator, or also the resonance frequency of the oscillator, for
reasons we will discuss later. Note that the period of oscillation (and also ω0) does
not depend on how far we stretch the spring at the beginning. Any solutionmultiplied
by a constant factor is still a solution of (2.2).

1The argument of the cosine is named the phase. The phase increases linearly with time if ω0 is
constant.
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We have found a solution to the equation of motion. But is this the only one or
are there more solutions? Also the sine function provides a valid solution. The most
general solution is a linear combination of a sine and a cosine function

z = A cos(ω0t) + B sin(ω0t). (2.6)

There is a more intuitive way to find the general solution. When we used the cosine
function as solution, the oscillation started with the maximum extension at time zero.
However, alternatively also any other time during the oscillation could be chosen as
the start of the oscillation. This shift of the time corresponds to a shift of the phase
of the oscillation by a constant phase shift φ. Thus, all solutions are captured if the
solution is shifted by a constant (but arbitrary) phase shift2 φ, and the general solution
results as

z = a cos(ω0t + φ). (2.7)

The two solutions given in (2.6) and (2.7) are in fact equivalent. Using the mathe-
matical identity

cos(α + β) = cosα cosβ − sinα sin β, (2.8)

the following relations between A, B in (2.6) and a,φ in (2.7) are obtained

A = a cosφ, B = −a sin φ. (2.9)

Moreover, it can be shown that the solutions given in (2.6) and (2.7) are the general
solution to the equation of motion. There are no other solutions.

In the general solution of the equation of motion, we introduced two more
constants: A and B, or a and φ, respectively. How are these constants determined?
They are determined by the initial conditions of the motion. For instance if we start
the motion from a static extension z0 = a = A, the values B and φ are zero. Now we
determine these constants for the most general initial condition: z0, v0. The accelera-
tion a(t) cannot be specified as an initial condition. It is given by the spring constant,
mass and z(t) according to (2.2). We use the form for the general solution given in
(2.6) and its derivative

v(t) = −ω0 A sin(ω0t) + ω0B cos(ω0t). (2.10)

These equations are valid for all times, but we know z and v at time t = 0. If we
insert t = 0 we obtain

z0 = A + B · 0 = A v0 = −ω0 A · 0 + ω0B = ω0B. (2.11)

2Sometimes φ is called phase, as well as the whole argument of the cos function in (2.7). What is
meant by the term phase should be clear from the context.
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We therefore find that the constants A and B can be determined by the initial condi-
tions as

A = z0 and B = v0/ω0. (2.12)

2.2 Free Harmonic Oscillator with Damping

In in the equation of motion for the harmonic oscillator (2.2) no damping was
included. Usually the viscous damping in a fluid (liquid or gas) is considered as pro-
portional to the velocity ż, resulting in a frictional force in the direction opposite to
the velocity as Ffrict = −β ż. Due to some conventions a different constant, the quality
factor Q is introducedwhich is defined by the following equation Ffrict = −mω0/Qż.
The physical significance of the quality factor Q will be discussed in detail later in
this chapter, however, we see already here that for a decreasing damping force Ffrict

the quality factor Q increases. Adding the frictional force to the equation of motion
(2.2) results in

mz̈ = −kz − mω0

Q
ż, (2.13)

or
z̈ + ω0

Q
ż + ω2

0z = 0. (2.14)

We choose the ansatz z = A′ exp(λt), because the exponential function is so easy to
differentiate. Inserting this ansatz into (2.14) results in

(
λ2 + ω0

Q
λ + ω2

0

)
z = 0. (2.15)

Thus, the expression in the brackets has to vanish (quadratic equation), resulting in
the following expression for lambda

λ1,2 = − ω0

2Q
± ω0

√
1

4Q2
− 1. (2.16)

In the cases we will consider here, the damping is small and only cases in which
Q > 1 occur. In this case the expression under the square root becomes negative and
we rewrite λ1,2 as

λ1,2 = − ω0

2Q
± iω0

√
1 − 1

4Q2
= − ω0

2Q
± iωhom, (2.17)
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Fig. 2.2 Oscillation of a free
harmonic oscillator with
damping

Time

z

e t/(2Q) cos( t)hom

with ωhom = ω0

√
1 − 1/(4Q2), since (2.14) with the zero on the right hand side is a

called a homogenous differential equation. With two expressions for λ two solutions
for z = A′ exp(λt) result. The general solution can be written as

z = e− ω0 t
2Q (Beiωhom t + Ce−iωhom t ). (2.18)

It looks as if this solution is a complex solution, while the quantity z has to be real.
However, a real solution results, if the two constants B and C are chosen as real and
B = C = A/2. In this case the Euler equation leads to

z = Ae− ω0 t
2Q cos(ωhomt). (2.19)

This solution is valid if the initial conditions are chosen as z(t = 0) = A and ż(t =
0) = 0. It can be shown that for general initial conditions a phase shift φ has to
be added in the cosine term [1]. This solution corresponds to an oscillation with
a frequency ωhom which is slightly lower than the frequency ω0 of the undamped
harmonic oscillator. This oscillation is damped by the exponential damping term

e− ω0 t
2Q , corresponding to the envelope of the damped oscillation, as shown in (Fig. 2.2).

2.3 Driven Harmonic Oscillator

In dynamic atomic force microscopy, we will consider a cantilever which is excited,
driven or moved with a sinusoidal external excitation amplitude. The simplest model
for this is a harmonic oscillator in which the upper fixing point of the spring is oscil-
lated (excited) sinusoidallywith zdrive(t) = Adrive cos(ωdrivet) (Fig. 2.3). The resulting
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Fig. 2.3 a Sketch of a driven harmonic oscillator, driven with an oscillatory driving amplitude
zdrive(t) = Adrive cos(ωdrivet) b Amplitude and phase shift of an undamped driven harmonic oscil-
lator as a function of ωdrive showing a resonance at ω0

force of the spring on the mass m is then F = −k(z − zdrive). The equation of motion
results as

ma = mz̈ = −k(z − zdrive). (2.20)

The driving frequency ωdrive can be different from the resonance frequency of the
oscillator ω0. The question arises at which frequency the driven harmonic oscillator
will oscillate. At its resonance frequency ω0, at the driving frequency ωdrive, or at
some value in between? It turns out that the driven harmonic oscillatorwill oscillate in
the steady-state at the driving frequency ωdrive. One special solution for the equation
of motion is

z(t) = A cos(ωdrivet). (2.21)

Inserting this ansatz into the equation of motion (2.20) results in

− mω2
drive A cos(ωdrivet) = −k A cos(ωdrivet) + k Adrive cos(ωdrivet). (2.22)

We find that z = A cos(ωdrivet) is a solution of the equation of motion if

A = ω2
0Adrive

ω2
0 − ω2

drive

. (2.23)
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The special solution (2.21) means that m oscillates at the driving frequency with
an amplitude which depends on the driving frequency and also on the resonance
frequency of the oscillator. If ωdrive < ω0 then displacement and driving excitation
are in the same direction. If ωdrive > ω0 then A becomes negative. This is equivalent
to a positive amplitude and a phase shift of−180◦ of the oscillation z(t) relative to the
driving excitation. The amplitude and phase shift for an undamped driven harmonic
oscillator are shown in (Fig. 2.3). If ωdrive � ω0 the amplitude A approaches the
excitation amplitude Adrive. If ωdrive � ω0 the amplitude approaches zero because
the mass can no longer follow the high frequency of the driving excitation.

As can be seen in Fig. 2.3 the amplitude A approaches infinity if ωdrive approaches
ω0. We will see in the next section that damping of the harmonic oscillator prevents
this “resonance catastrophe”.

2.4 Driven Harmonic Oscillator with Damping

Including damping to the driven harmonic oscillator is a more realistic case which
we consider in the following. An additional friction term has to be included to the
equation of motion (2.20). Usually the viscous damping in a fluid (liquid or gas) is
considered as proportional to the velocity, resulting in a frictional force in the direc-
tion opposite to the velocity. In Fig. 2.4 the damping force is represented graphically
by a viscous dashpot. This dashpot can be anchored in different ways: In Fig. 2.4a
this dashpot is anchored to an external (not moving) reference frame, resulting in a
frictional force proportional to ż, as Ffrict = −mω0/Qż. This situation corresponds
for instance to the situation in which an AFM cantilever oscillation is damped by
the surrounding air. In Fig. 2.4b a situation is shown in which the viscous dashpot is
anchored to the oscillating driving reference frame, resulting in a frictional force pro-
portional to ż − żdrive, as Ffrict = −mω0/Q(ż − żdrive). This situation corresponds to
the situation of vibration isolation, in which a scanning probe microscope has to be
isolated from external vibrations, and is considered further in Sect. 3.6.1. Here we
consider in the following the dashpot anchoring shown in Fig. 2.4a.

As driving excitation we consider an external exciting amplitude zdrive(t) =
Adrive cos(ωt). Here and in the following we replaced ωdrive ≡ ω, in order to have a
simpler notation. The spring force acting on the oscillatingmass is again proportional
to the difference between the position of themass z and the excitation amplitude zdrive
as F = −k(z − zdrive). With this the equation of motion reads

mz̈ = −m
ω0

Q
ż − k(z − zdrive). (2.24)

After dividing by m and replacing ω2
0 = k/m results in3

3We do not perform the replacement in all terms, because of a later use of the equations.
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mm

zdrivezdrive

(a) (b)

z zFfrict ~ z.
F -zfrict drive~ z. .

Fig. 2.4 Schematic of a driven damped harmonic oscillator for two different ways of anchoring
the viscous dashpot representing the damping. a Dashpot anchored to an external fixed reference
frame and b dashpot anchored to the driving reference frame. These two variants result in different
expressions for the frictional force

z̈ + ω0

Q
ż + k

m
z = ω2

0zdrive. (2.25)

Solving this equation would be quite difficult without the use of complex numbers.
The trick here is to consider z and zdrive as complex numbers (z̃ and z̃drive) and find
the complex solution for the differential equation. Since the physical quantities are
real and the differential equation is linear, at the end only the real part of z̃ is our
solution. The deflections z and zdrive are regarded as complex numbers as

z̃ = Aei(ωt+φ) = Aeiφeiωt = ẑeiωt and z̃drive = Adrivee
iωt . (2.26)

Without loss of generality we set the phase shift of the excitation amplitude zdrive
to zero, i.e. Adrive is real, while ẑ is regarded as a complex number with a (real)
phase shift φ and (real) oscillation amplitude A as, ẑ = Aeiφ. The real part of z̃ will
later be the real solution for the deflection z of the mass m. The nice thing about
the complex notation is that differentiation of z̃ is now just multiplication with iω
( dz̃
dt = ẑiωeiωt = iωz̃). Thismeans differentiation in (2.25) (with z → z̃) canbe easily
executed and this differential equation converts to the simple algebraic equation

[
(iω)2 ẑ + ω0

Q
iωẑ + k

m
ẑ

]
eiωt = ω2

0 Adrivee
iωt . (2.27)
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After dividing both sides by eiωt , we obtain the complex solution

ẑ = ω2
0 Adrive

k
m − ω2 + i ω0

Q ω
. (2.28)

Now the real z is the real part of the complex quantity z̃ as

z = Re(z̃) = Re(ẑeiωt ) = Re(Aei(ωt+φ)). (2.29)

Since A and φ are real, the resulting real position z reads

z = A cos(ωt + φ), (2.30)

with the amplitude A and phase shift φ between excitation amplitude and oscillation
amplitude.

In order to calculate A we recall that ẑ = Aeiφ. Therefore, ẑ ẑ∗ = A2 and A2 can
be written as

A2 = ω4
0 A2

drive(
k
m − ω2 + iω0ω

Q

) (
k
m − ω2 − iω0ω

Q

) = ω4
0 A2

drive(
k
m − ω2

)2 + ω2
0ω

2

Q2

. (2.31)

Furthermore, the oscillation amplitude A can be written as a function of the normal-
ized frequency ω/ω0 and finally replacing k/m by ω2

0 results in

A2 = A2
drive[

1 −
(

ω
ω0

)2
]2

+ 1
Q2

(
ω
ω0

)2
. (2.32)

The phase shift φ of the oscillation relative to the excitation can be obtained
as follows. In general the phase ϕ of a complex number x = reiϕ can be obtained
from the relation tanϕ = Im(x)

Re(x) . In order to calculate the phase shift φ, we recall that

ẑ = Aeiφ. However, according to (2.28) the real and imaginary parts of 1/ẑ are much
easier to find. Therefore, we write

1

ẑ
= 1

Aeiφ
= 1

A
e−iφ = 1

ω2
0 Adrive

(
k

m
− ω2 + i

ω0

Q
ω

)
. (2.33)

Using the fact that tan(−φ) = − tan φ, we see that

tan φ = −ω0ω

Q
(

k
m − ω2

) . (2.34)

Also the phase shift φ can be written as function of the normalized frequency ω/ω0,
and replacing k/m by ω2

0, as
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Fig. 2.5 Amplitude and phase shift of a damped driven harmonic oscillator as a function of ω ≡
ωdrive, for different values of damping, expressed by the quality factor Q

tan φ = − ω
ω0

Q

[
1 −

(
ω
ω0

)2
] . (2.35)

With these results, the amplitude (2.32) and phase shift (2.35) in the solution
(2.30) are calculated as a function of given variables. The resonance curve in Fig. 2.5
shows the amplitude and the phase shift of a driven damped harmonic oscillator for
three different values of Q. For small driving frequencies ω � ω0, the motion of
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the oscillator mass just follows the outer excitation with a phase shift approaching
zero; i.e. the oscillation is in phase with the excitation. For larger driving frequencies
the phase of the oscillation lags behind that of the excitation. With our convention
regarding the sign of the phase shift (i.e. the positive sign +φ in (2.30)), the phase
becomes negative for larger frequencies (phase lag), as shown in Fig. 2.5. Often
the opposite convention for the phase shift is chosen (i.e. a negative sign −φ in
(2.30)), which leads to positive phase shifts (phase lead). For frequencies ω � ω0,
the amplitude A approaches zero and the phase (shift) approaches −180◦, i.e. the
motion of the oscillator mass is always in opposite to the excitation.

If we take the limit ω � ω0 in (2.32) we find that the amplitude is proportional to
1/ω2 for small damping, i.e. Q � 1. As seen in Fig. 2.5, the smaller the damping, the
higher themaximum amplitude is. For small damping themaximum of the resonance
curve is very close to the resonance frequency of the free harmonic oscillator ω0.
At any driving frequency the phase shift is smaller than zero, which means that the
oscillator displacement z always lags behind the driving excitation (Fig. 2.5). The
phase shift at resonance (ω = ω0) is −90◦, while it approaches −180◦ for large
driving frequencies.

The amplitude at the resonance frequency A(ω0) can be obtained using (2.32) as

A(ω0) = Q Adrive, (2.36)

i.e. the amplitude at resonance is Q times higher than the excitation amplitude. For
the case of cantilevers in atomic force microscopy this resonance enhancement of
the excitation amplitude can be quite high. Due to damping in air, Q-factors of 500
are usual for cantilevers in air. In vacuum, quality factors higher than 10,000 can be
reached.

For the case that the oscillation frequency is very close to ω0, i.e. ω ≈ ω0, the
expression for the resonance curve (2.32) can be approximated as

A2 = A2
drive[(

1 + ω
ω0

) (
1 − ω

ω0

)]2 + 1
Q2

ω2

ω2
0

≈ A2
drive

4
(
1 − ω

ω0

)2 + 1
Q2

. (2.37)

In order to obtain this we used the approximations 1 + ω
ω0

≈ 2 and ω2

ω2
0

≈ 1, which
hold if ω ≈ ω0.

An important quantity is the width of the resonance curve. Therefore, we calculate
in the following the frequencyω1/2 at which the amplitude of the oscillation decreases
to 1/

√
2 of its value4 at ω0. This condition for the amplitudes can be written as

A(ω1/2) = 1√
2

A(ω0) = 1√
2

Q Adrive. (2.38)

4We use the decrease of the amplitude to 1/
√
2 instead of 1/2, because in this case the energy in

the harmonic oscillator, which is proportional to the square of the amplitude, decreases to one half
of its maximum value.
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If we insert ω = ω1/2 in expression (2.37), the following relation results

A2(ω1/2) ≈ A2
drive

4
(
1 − ω1/2

ω0

)2 + 1
Q2

≈ 1

2
Q2 A2

drive. (2.39)

Solving this expression forω1/2 − ω0 results inω1/2 − ω0 ≈ 1
2

ω0
Q . Since the full width

of the resonance curve is twice of this, we obtain

δω ≈ ω0

Q
. (2.40)

This means the larger the Q-factor, the narrower the resonance is.
The maximum of the resonance amplitude, which we determine in the following,

lies at a slightly lower frequency thanω0. Themaximumof the resonance curve occurs
at the frequency atwhich the denominator in (2.32) becomesminimal. Differentiating
the denominator of (2.32) with respect to ω/ω0, and equating this derivative to zero
results in the following expression for the frequency ωmax at which the resonance
curve has its maximum

ωmax = ω0

(√
1 − 1

2Q2

)
. (2.41)

The corresponding shift of the resonance curve to lower frequencies results as

ωmax − ω0 = ω0

(√
1 − 1

2Q2
− 1

)
. (2.42)

For the case of an AFM cantilever considered as a harmonic oscillator we estimate
some values for this frequency shift of the resonance curve due to the damping Q of
the cantilever. For a resonance frequency of f0 = 300 kHz and quality factors of Q =
10,000 and Q = 300, a frequency shift of 0.8mHz and 0.8Hz results, respectively.
These are very small values and correspondingly in most cases we will neglect this
small shift and consider the maximum of the amplitude to be located at ω0, unless
the quality factor is very low.

2.5 Transients of Oscillations

The solution for the damped driven harmonic oscillator (2.30) is the so-called steady-
state solution after transients due to the initial conditions have died out. An example
for a transient is an oscillation which starts from rest. The amplitude is initially zero,
builds up after the excitation starts, and reaches the steady-state amplitude in the
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limit of large times. The steady-state solution (2.30) does not contain such transients
arising from specific initial conditions.

It can be shown that the general solution of the driven damped harmonic oscillator
is the specific solution (2.30) of the inhomogeneous system (i.e. including the exter-
nal driving) plus a solution of the corresponding homogeneous problem. The corre-
sponding homogeneous problem is the damped harmonic oscillator without external
driving, which was considered in Sect. 2.2 and resulted for small damping in an expo-
nentially decaying oscillation zhom = A′ exp(−ω0t/(2Q)) cos(ωhomt + φ′) with the
oscillation frequency ωhom being slightly lower than the resonance frequency ω0 of
the free harmonic oscillator ωhom = ω0

√
1 − 1/(4Q2) and with A′ and φ′ as coeffi-

cients determined by the initial conditions.
If we call the specific solution z in (2.30) zs , the general solution for the driven,

damped harmonic oscillator is given as zgeneral = zs + zhom. It is necessary to include
the solution of the damped harmonic oscillator without external driving zhom since
it can describe the transients which are not described by zs . All aspects of zs are
specified in terms of the driving frequency, the driving amplitude, and the phase
shift. Yet we still need some way to impose the constraints given by the initial
conditions z(0) and v(0) in the general solution. The two coefficients A′ and φ′ give
the freedom to match the general solution to z(0) and v(0).

As an example we consider as initial condition that the oscillation starts from rest.
In Fig. 2.6 the general solution for the initial condition: starting from rest, is shown to
be composed of the specific solution of the inhomogeneous system (Fig. 2.6a) plus
the solution for the homogeneous system (transient) zhom (Fig. 2.6b). In Fig. 2.6c the
sum of both is shown for the case that ω = ωhom. The specific solution in Fig. 2.6a is
approached within the decay time for the homogeneous solution Fig. 2.6b. The fact
that the situation is not always that simple is shown in Fig. 2.6d. Here the driving
frequency deviates fromωhom, which leads to a beating behavior before a steady-state
solution is reached.

If the driven damped oscillator is oscillating in steady-state (Fig. 2.6a) and the
driving amplitude is stopped suddenly, the problem is converted to a homogeneous
one and the oscillator will de-excite as shown in Fig. 2.6b. This is a sinusoidal oscil-
lation with the envelope decreasing as exp(−ω0t/(2Q)). This means that after a time
τ = 2Q/ω0 = TQ/π the amplitude has decreased by 1/e. This characteristic time is
called ring-down time and increases with smaller damping. The same time is needed
to build up the steady-state oscillation amplitude after a start from rest. This means
that the oscillation builds up (decays) within roughly Q oscillation cycles and Q can
be expressed as

Q = 1

2
τω0 = πτ f0. (2.43)
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Fig. 2.6 The general solution for a damped driven harmonic oscillator is composed of the specific
solution of the inhomogeneous driven system (steady-state solution), shown in (a) plus the solution
of the homogeneous system without driving (transient), shown in (b). The initial conditions are
chosen such that the general solution satisfies the given initial conditions (start from rest in this
example). c and d show two examples of general solutions (for two different driving frequencies)
starting from rest and approaching the steady-state solution for long times

2.6 Dissipation and Quality Factor of a Damped
Driven Harmonic Oscillator

In the previous sections we have discussed that the Q-factor determines the height
(A(ω0) = Q Adrive) and the width (δω = ω0/Q) of the resonance curve of a driven
damped oscillator. Now we will show that the quality factor of a driven damped
harmonic oscillator can be also expressed as

Q = 2π × Energy stored in the oscillator

Energy dissipated per cycle
. (2.44)

Let us first consider the energy dissipated per cycle.When the oscillator is initially
at rest and an external oscillatory excitation is applied, energy is successively stored
in the oscillator with the buildup of the oscillation (transient). If the oscillator is
finally in a steady-state, the energy stored in the oscillator is constant and all the
energy supplied by the external force ends (on average) up in the dissipative term.
The instantaneous power dissipated is Ffrict · v = mω0/Qv2 and varies over one
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period, as v varies. The mean power consumed by the oscillator in steady-state can
be written as5

〈P〉 = 〈Ffrict · v〉 = mω0

Q
〈v2〉. (2.45)

The brackets indicate an averaging over one oscillation period. Since z = A cos(ωt +
φ), differentiation results in v2 = ω2 A2 sin2(ωt + φ). If sin2 is averaged over one
period a factor of one half results. Therefore, the average power results in

〈P〉 = mω0

Q
〈v2〉 = mω0

2Q
ω2 A2. (2.46)

With this the energy dissipated per cycle is

Energy dissipated per cycle = 〈P〉T = 〈P〉2π/ω = πmω0ωA2

Q
. (2.47)

Now the nominator of (2.44), i.e. the total energy stored in the oscillator will be
evaluated. If we consider driving frequencies close to ω0, the energy stored in the
driven oscillator is approximately the energy of the free oscillator with the same
amplitude A, as [2]

Energy stored in the oscillator ≈ 1

2
k A2 = 1

2
mω2

0 A2. (2.48)

If we insert (2.47) and (2.48) into the right hand side of (2.44) and consider
frequencies close to the resonance frequency ω ≈ ω0 the important expression for
the quality factor (2.44) results.

2.7 Effective Mass of a Harmonic Oscillator

In this chapter, we always considered an idealized system consisting of a massless
spring and a mass m at its end. However, in several cases of practical relevance this
approximation is not fulfilled. For instance, in the case of a cantilever-type spring,
often used in atomic force microscopy, the mass (of the cantilever) is distributed
throughout the whole cantilever (Fig. 2.7b). It can not be expected that the mass
distributed along the whole spring mspring can simply replace the mass m at the end
of amassless spring in the equations ofmotion. However, a properly defined effective
mass meff can replace the point mass in the equations of motion.

Here we introduce the concept of the effective mass for the example of a coil
spring (with mass mspring) and assume that the mass is distributed homogeneously
along its length and the oscillation amplitude is much smaller than the length of the

5This results, as the energy can be written as E = ∫
F(z)dz = ∫

F(z(t))dz/dtdt , and thus the
power results as P = dE/dt = F(t)v(t).
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spring. In the following, we calculate the kinetic energy of the spring and we do not
consider a mass M at the end of the spring.

When calculating the kinetic energy of the spring, we regard v(z) as the velocity
of a length element dz at the position z

d Ekin = 1

2
dm v2(z) = 1

2

mspring

L
dz v2(z). (2.49)

According to Fig. 2.7a, the velocity distribution along the spring is linear with z and
can be written as v(z) = vmaxz/L , with vmax being the maximum velocity at the end
of the spring, i.e. v(L). Integrating the kinetic energy along the spring results in

Ekin = 1

2

mspring

L

L∫
0

v2(z)dz = 1

2

mspring

L

L∫
0

v2max
z2

L2
dz

= 1

2

(
1

3
mspring

)
v2max = 1

2
meffv

2
max. (2.50)

Thus, the kinetic energy of a mass-containing spring is equivalent to the one of a
massless spring with an effective mass meff = 1/3 mspring fixed to the end of the
spring and the velocity vmax at the end of the spring, which is called just v in the case
of a massless spring. From the calculated kinetic energy and the potential energy
(in which the mass does not enter) the Lagrange function results as their difference.

L

z

M

mspring

vmax

v(z)
dz

(a)

(b)

L

z

x z , v(x) (x)

Fig. 2.7 a For a spring with mass mspring, the velocity of a volume element depends on the position
v(z). The effectivemass turns out to be 1/3 of the springmass. b For a cantilever beam the deflection
and the velocity are non-linear as a function of x
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The Euler-Lagrange equations can be used to obtain the equation of motion. Since
the only difference with respect to the kinetic energy of the massless spring is the
substitution of meff replacing the mass at the end of a massless spring, the Lagrange
function and the resulting equation of motion are the same, as for the massless spring
if the substitution for the mass is performed. As the equation of motion is the same,
also the solution is the same when the effective mass is used. For instance calculating
the resonance frequency of a harmonic oscillator in which the spring contains mass,
the effective mass has to be used instead of the mass at the end of a massless spring

as ω0 =
√

k
meff

. If an additional mass M at the end of a spring is also considered, the

effective mass becomes meff = M + 1/3 mspring.
For the situation of a cantilever beam the situation is more complicated, because

the deflection z (in reaction to a force applied at the end of the cantilever) is not linear
along the cantilever beam as shown in Fig. 2.7b. According to [3], the bending has
the form z(x) ∝ −x3 + 3x2L . Since a harmonic oscillation is considered throughout
the beam, the velocity distribution along the beam is proportional to the deflection
v(x) = cz(x). The constant of proportionality is determined by the condition v(L) =
vmax as c = vmax/(2L3). Thus, the velocity at position x along the beam results as

v(x) = vmax

2L3

(−x3 + 3x2L
)
. (2.51)

Using this expression for the velocity distribution along the beam, the (maximum)
kinetic energy can be obtained by integration along the beam as

Ekin = 1

2

L∫
0

mcant

L

v2max

4L6

(−x3 + 3x2L
)2

dx = 1

2

(
33

140
mspring

)
v2max

= 1

2
meffv

2
max. (2.52)

Thus, the effective mass for a cantilever beam turns out to be meff = 0.2357mspring,
instead of meff = 1/3 mspring for a coil spring.

In the case of a cantilever spring, an effectivemass has to be used in the equation of
motion and all subsequently derived expressions such asω0 = √

k/meff . Throughout
this text we use the concept of the harmonic oscillator and denote the mass as m in
order to keep the notation simple. It has to be kept in mind that in fact the appropriate
effective mass has to be used.

2.8 Linear Differential Equations

At the end of this chapter, we consider some general properties of linear differential
equations with constant coefficients. A homogeneous linear differential equation
up to the second order can be written as
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a1x + a2 ẋ + a3 ẍ = 0. (2.53)

The following propositions hold for the homogeneous equation.

• Homogeneity: If x is a solution of the linear differential equation, Cx is also a
solution.

• Superposition: If x1 and x2 are solutions of the linear differential equation, x1 + x2
is also a solution.

• Combining the two, we see that all linear combinations of two solutions are also
solutions.

The corresponding inhomogeneous equations including an external driving force
F(t) can be written as

a1x + a2 ẋ + a3 ẍ = F(t). (2.54)

If we have a (special) solution of the inhomogeneous equation x1, we can add
any solution x2 of the homogenous (free) equation F(t) = 0 and the sum x = x1 +
x2 will be also a solution of the inhomogeneous system as we see if we add the
inhomogeneous equation and the homogeneous equation as

a1(x1 + x2) + a2(ẋ1 + ẋ2) + a3(ẍ1 + ẍ2) = a1x + a2 ẋ + a3 ẍ = F(t). (2.55)

Finally, we come to another important property of linear differential equations.
Ifwe have a solution x1 for an external force F1(t) and a second solution x2 for another
external force F2(t), then a solution for the problem with the force F1(t) + F2(t) is
x1 + x2. This superposition principle is remarkable and is the basis for decomposing
a complicated (arbitrary) force into Fourier components and composing the solution
of the problem with a complicated force as a superposition of the solutions obtained
for simple harmonic forces. This is also a late justification forwhyweonly considered
an external excitation (force) of simple harmonic form for the harmonic oscillator.

2.9 Summary

• The free harmonic oscillator has the resonance frequency of ω0 =
√

k
m .

• The driven harmonic oscillator oscillates at the driving frequency ω with an ampli-
tude depending on ω and ω0.

• If ω = ω0 the amplitude becomes very large (resonance).
• For the damped driven oscillator the amplitude at resonance is damped with
increasing damping force Ffrict = −m ω0

Q ż.
• The phase shift between driving excitation and oscillation is zero if ω � ω0, it is

−90◦ if ω = ω0, and −180◦ if ω � ω0.
• The quality factor of the oscillation Q is 2π times the ratio of the energy stored
in the oscillator to the energy dissipated per cycle. The Q-factor determines the
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height (A(ω0) = Q Adrive) and the width (δω = ω0/Q) of the resonance curve of
a driven damped oscillator.

• The build up or the decay of the steady-state amplitude takes about Q oscillations,
i.e. the corresponding time constant for the decay to 1/e is τ = 2Q/ω0.

• If a spring has a non-negligible mass, the effective mass has to be used in the
equation for the resonance frequency of the harmonic oscillator.
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Chapter 3
Technical Aspects of Atomic Force
Microscopy

In order to perform nanoscale motions in AFM (e.g. during scanning) very precise
actuators are required. Piezoelectric actuators achieve the required precision. We
describe the principles of operationof these actuators andpresent examples of specific
actuators. In the following principles of vibration isolation are considered, because
the amplitude of floor vibrations is much larger than the desired amplitude of the
tip-sample vibrations.

3.1 Piezoelectric Effect

In order to position the probe tip or the sample, piezoelectric elements are used as
actuators. The piezoelectric effect was discovered by the Curie brothers in 1880. A
sketch of their experiment is shown in Fig. 3.1. Tin foils were attached as electrodes
to two sides of a quartz plate. One tin foil was grounded and one connected to an
electrometer.While a forcewas applied to generate vertical strain, an electrical charge
was detected by the electrometer. The piezoelectric effect is used, for instance, to
ignite pocket lighters (generating the voltage which generates the lightning spark)
and many other technical applications such as sensor technology.

The converse effect occurs if a variable voltage is applied to the foils and a defor-
mation of the crystal results. The converse piezoelectric effect is used in piezoelectric
actuators. Since this deformation is very small and a continuous quantity, deforma-
tions much smaller than the diameter of an atom can be obtained for reasonably small
voltages in the mV range.

In order to apply an external electric field inside the (electrically insulating) piezo-
electric material, metallic electrodes at the surface are used. A voltage applied to the
electrodes induces an electric field in the piezo material (as in a capacitor with a
dielectric) and finally results in an extension of the piezo material. Vice versa, a
strain of the piezo material leads to a surface charge and thus to a charge on the
electrodes, and finally to a voltage between the electrodes.
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Fig. 3.1 Curie brothers’
experiment demonstrating
the piezoelectric effect

Hinge

Quartz plate
Tin foil

Electrometer
Ground

The piezoelectric effect occurs only for crystals which are not centrosymmetric,
i.e. do not have an inversion center. If an inversion center exists no net electric dipole
moment can be induced inside the unit cell by straining the crystal. If a dipolemoment
is present at a position r inside the unit cell, the opposite dipole is also present at
the position −r due to the inversion symmetry and the net dipole moment of the
unit cell is zero. In a piezoelectric material however, a directional deformation leads
to uncompensated microscopic dipoles inside the crystallographic unit cell. These
microscopic dipoles lead to a charge at the surface of the crystal and a corresponding
electric field inside the crystal. In the converse piezoelectric effect, the crystal unit
cell is deformed by an external applied electrical field. An example of a piezoelectric
material is crystalline quartz. Another example of a piezoelectric material used in
piezoelectric actuators is PZT ceramics (lead zirconate titanate Pb[ZrxTi1−x]O3).
PZT is piezoelectric and also ferroelectric, which means that there is a permanent
net electric dipole even in the absence of any externally applied mechanical stress.

In the following, we explain the principle of the piezoelectric effect on the atomic
scale using the example of a PZTunit cell. The unit cell,which is shown schematically
in Fig. 3.2a, consists of Pb2+ at the corners of the unit cell, O2− at face centered
positions on the outer faces of the unit cell, forming an octahedron, andTi4+ displaced
from the center of the unit cell. In Fig. 3.2b, the unit cell is shown from the sidewith an
arrow indicating the direction and size of the permanent electric dipole moment. The
electric dipole inside the unit cell results in a net charge at the surfaces (xy-planes) of
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Fig. 3.2 a Schematic of the PZT unit cell. b Side view of the PZT unit cell with the dipole induced
by the displaced Ti4+. c Longitudinal piezoelectric effect: upon compression of the unit cell along
the z-axis the magnitude of the dipole is reduced leading to a corresponding change of the surface
charge. d Transverse piezoelectric effect: strain along the x-axis leads, due to the Poisson effect,
to a change of the dipole along the z-direction and a corresponding change of the surface charge. e
Shear piezo effect: a shear strain along the z-direction leads to a change of the x-component of the
dipole and a corresponding change of the surface charge

the piezoelectric PZT material, as in the case of a capacitor with a dielectric material
inside. The direction along which the permanent dipole moment points is taken as
the z-direction and the material is said to be poled along the z-direction.

When the piezoelectric material is strained in the poling direction (e.g. com-
pressed, as shown inFig. 3.2c), themagnitude of the electric dipolemoment decreases
and correspondingly the electric field inside the material and the surface charge
decrease. This case,where the strain is applied along the poling direction (z-direction)
leading to a voltage between the two opposite xy-surface planes, is called the longi-
tudinal piezoelectric effect.

The case in which the external strain is applied perpendicular to the poling
direction (x-direction) is shown in Fig. 3.2d. In spite of the fact that the crystal
is compressed in the x-direction, no dipole moment occurs in x-direction (nor in the
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y-direction), because there is a mirror symmetry. For every atom there is an atom
at the −x position inside the unit cell canceling the net dipole moment along the
x-direction. However, due to the Poisson effect any strain in x-direction also leads
to a corresponding transverse strain in the z-direction (as well as in the y-direction).
This strain in the z-direction will lead to a change of the dipole moment in z-direction
and to a corresponding change of the surface charge on the xy-surface planes. This
piezoelectric effect in which a strain along the x-direction results in a change of the
dipole moment in z-direction is called the transverse piezo effect.

If a shear strain is applied along the z-direction, as shown in Fig. 3.2e, the dipole
turns and induces a change of the component of the dipole moment in the x-direction
and a corresponding build up of surface charge. This effect is called the shear piezo-
electric effect. In the first order, the dipolemoment in the z-direction does not change.

In the preceding we discussed the piezoelectric effect. However, the reverse rea-
soning also applies for the converse piezoelectric effect where a voltage applied to
the outer metallic electrodes results in a strain of the piezoelectric material [1]. The
charge on the outer metallic electrodes leads to a change of the dipole moment in
the ferroelectric material. This corresponds to a capacitor with a dielectric, where
an charge on the capacitor plates induces a polarization and a corresponding surface
charge. In the case of a piezoelectric material the dielectric is already polarized with-
out an outer electric field applied. The change of the dipole moment (change of the
polarization) induces in piezoelectric materials a corresponding strain. This direction
of the piezoelectric effect is relevant for piezoelectric actuators. In the following, we
describe the strain produced in different types of piezoelectric actuators induced by
a voltage applied to their electrodes.

3.2 Extensions of Piezoelectric Actuators

If a voltage �V is applied across a rectangular piece of piezoelectric material
(Fig. 3.3a) of dimensions x , y, and z (poled in z-direction) the external applied elec-
tric field is, due to the plate capacitor configuration, E3 = �V/z. In practical terms
the field is applied to a piece of piezoelectric material via the metallic electrodes at
the surfaces of the piezo element. Often the directions x , y, and z are labeled as 1, 2,
and 3, respectively. The direction of the poling field is labeled as direction 3, or as
the positive z-direction. As a result of the applied electric field, a strain is generated
along the z-direction and also, via the transverse elongation of the material (Poisson
effect), a transverse strain in the x-direction (as well as in the y-direction). If a piezo
plate of thickness z (Fig. 3.3a) is strained in the z-direction by�z, the corresponding
strain is S3 = �z/z. The strain in x-direction is S1 = �x/x . The same also applies
for the y-direction.

Themechanical strain developed in a piezoelectricmaterial is known to be propor-
tional to the applied electric field,with the piezoelectric coefficients as proportionality
constants. The piezoelectric coefficients are material constants which depend, how-
ever, on the direction along which the electric field is applied and on the direction
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Fig. 3.3 a Sketch of a piezo plate (dimensions x , y, and z) poled in the z-direction. Considering the
longitudinal piezo effect, an electric field in the z-direction induced by a voltage �V in z-direction
induces a strain in z-direction, �z. Considering the transverse piezoelectric effect a voltage in the
z-direction also induces a strain in the x-direction, and also of course in y-direction. In this case, the
piezo constant is proportional to the length x of the plate. b Since for the longitudinal piezo effect
the piezo coefficient is independent of the plate thickness z, several plates have to be stacked on top
of each other in order to tune (enhance) the piezo constant. c Photo of piezoelectric stack actuators
made by gluing together single piezo plates. d Monolithic stack actuators with much smaller layer
thickness of about 60µm in this case (reproduced with permission from PI Ceramic [2])

along which the strain is considered. The piezoelectric coefficients are defined as
the ratios of the strain components (in a certain direction) over the component of
the applied electric field (in a certain direction), for example for the longitudinal
piezo effect

d33 ≡ S3
E3

, while d31 ≡ S1
E3

(3.1)

is the piezoelectric coefficient which applies in the case of the transverse piezoelec-
tric effect. Because strain is a dimensionless quantity, the piezoelectric coefficients
have dimensions of meter/volt. Their values are extremely small. For applications in
scanning probe microscopy, a natural unit is Å/V. Since the voltage difference at the
electrodes and the corresponding charge difference are related to the work�U which
has to be supplied to put charge to the electrodes by �V = �U

�Q , equivalent units for
the piezoelectric coefficients are also coulomb/newton. This is also equivalent to the
induced charge density (C/m2) per applied stress (N/m2).

While the piezoelectric coefficients are material properties the piezo constant is
assigned to a specific actuator element with specific dimensions, and the electric field
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applied along a specific direction, and the strain considered in a specific direction.
The piezo constant of an actuator is the ratio between the amount of motion in a
certain direction and the voltage applied between the electrodes, e.g. �z/�V.

As a first example, a piezoelectric plate shown in Fig. 3.3a serves as our piezoelec-
tric actuator, with the electric field applied along the z-direction (poling direction),
and the strain considered in the z-direction as well. There is also strain present in
the x-direction, which we will analyze later. The piezo constant �z/�V can be
calculated as follows

�z

�V
= �z/z

�V/z
= S3

E3
= d33. (3.2)

The piezo constant for motion of a piezo plate in the z-direction (induced by the
longitudinal piezo effect) is not dependent on the thickness of the piezo plate z. The
z-dependence in (3.2) is canceled out due to same dependence of both the electric
field and the strain on z. This means the piezo coefficient of a plate cannot be tuned
by changing its thickness (or, of course, also the diameter). The only way to tune or
enhance the length extension per voltage is to stack several piezo plates on top of each
other as shown schematically in Fig. 3.3b. With common electrodes in between the
plates, neighboring plates have to have opposite poling and the electrical connections
to the electrodes have to be as indicated in Fig. 3.3b. A photo of this type of piezo
actuator known as a piezoelectric stack actuator, produced by the company PI, is
shown in Fig. 3.3c. The net displacement is the sum of the displacements of the
individual piezo plates. The dimensions of the piezoelectric stack actuators are very
flexible. Typical dimensions are in the mm range for the thickness of a single plate
and in the cm or even decimeter range for the height of the stack. Quite large piezo
constants can be achieved in this way (corresponding to a displacement of 10µm for
a stack height of 10mm).

There are actually two types of piezoelectric stack actuators. The first type con-
sists of plates about half a mm in thickness, which are glued together to form a
stack (Fig. 3.3c). Such stack actuators are characterized by high operating voltages
of up to 1,000V and low capacitances in the nF range. On the other hand, there are
monolithic stack actuators which are characterized by a much smaller piezoelectric
layer thickness (∼60µm) as shown in Fig. 3.3d. These monolithic actuators are man-
ufactured using a cofiring technology during sintering of the piezoelectric material
together with the electrodes. This type of actuator has a lower operating voltage of
about 120V. The disadvantage of such a piezo actuator is its quite high capacity, in
the μF range. If a quick extension of the actuator is required, quite high charging
currents have to be supplied.

In a different kind of piezoelectric actuator, the elongation of a piezo plate in
x-direction due to the transverse piezoelectric effect can be exploited (Fig. 3.3a).
The piezo constant for the motion along the x-axis can be obtained as

�x

�V
= �x/x

�V/z

x

z
= S1

E3

x

z
= d31

x

z
. (3.3)
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In this case, the piezo constant depends on the dimensions of the plate. The piezo
constant is proportional to the length x of the piezo element and inversely proportional
to its thickness z. Using the transverse piezo effect, the piezo constant of the actuator
can be tuned by its dimensions. To obtain a large piezo constant a long piezo or
a thin piezo element can be used. However, long, thin piezo elements lead to low
resonance frequencies of the bending vibration, which is disadvantageous for stable
AFM operation, as we will see later. Also for a small thickness, the electric field rises
and may approach the allowed limits of the material. While we have considered a
piezoelectric plate here, the most frequently used shape for a piezoelectric actuator
based on the transverse piezo effect is the piezo tube, which wewill consider in detail
later. A piezo tube can be imagined as a plate which is rolled up to form a tube.

Of course, in a piezoelectric plate both piezoelectric effects (the longitudinal and
the transverse) occur simultaneously. In both of the previous cases we focus on one
effect and neglect the other due to the specific direction of the extension we are
looking at. When discussing the longitudinal piezo effect of a plate we focus on the
change of the thickness of the plate and do not consider the change in the width of the
plate due to the transverse effect. On the other hand, when we focus on the transverse
extension of a plate, we do not consider the change of the thickness of the plate.

In Fig. 3.4a a piezoelectric plate is shown which is poled in the z-direction (hori-
zontal in this case) while the electric field (voltage) is applied along the x-direction,
i.e. vertical. As we have seen in Fig. 3.2e, this configuration leads to a shear strain
along the z-direction with Sshear = �z/x . The piezo constant can be written as

x
z

y

x
z

V

(a)

(b) (c)

z

Fig. 3.4 a Sketch of a piezoelectric plate operated using the shear piezo effect. b Photo of a single
shear piezo plate (6mm × 7mm). c Photo of a shear piezo stack (15mm × 15mm)
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�z

�V
= �z/x

�V/x
= Sshear

E1
≡ d15. (3.4)

The corresponding piezo coefficient is called (due to some conventions) d15. Thus,
the piezo constant results as �z

�V = d15. As in the case of the longitudinal effect, the
piezo constant does not depend on the plate dimensions. Therefore, stacks of shear
piezo elements are often used here as well. Shear piezos are attractive piezo elements
as they induce a uniform lateral motion of their surface. As shown in Fig. 3.4b, shear
piezos have a size of only a few millimeters. If shear piezo elements are stacked onto
each other and rotated by 90◦, motions in two orthogonal directions can be performed
as shown in Fig. 3.4c.

3.3 Piezoelectric Materials

Initially, the piezoelectric effect was observed in crystalline materials, for instance in
quartz. However, for use in piezoelectric actuators, single crystals are inconvenient.
Today mostly lead zirconate titanate ceramics (PZT, Pb[ZrxTi1−x]O3) are used as
materials for piezoelectric actuators because ceramics can be formed into various
shapes and because of their large piezo coefficients. Thesematerials are ferroelectric,
which means they exhibit a permanent electric dipole even in the absence of an
external electric field. The unit cell of PZT has an anisotropic structure below the
Curie temperature, i.e. elongated in one direction as shown in Fig. 3.5a. Above the
Curie temperature Tc, the crystal structure becomes cubic and the material loses its
piezoelectric properties Fig. 3.5b.

Directly after sintering, piezoelectric ceramics does not exhibit a piezoelectric
effect. This is due to two reasons: first the ceramic is a polycrystalline material with

Pb2+

O2-

Ti4+

Pb2+

O2-

Ti4+

(a) (b)

Fig. 3.5 Unit cell of the PZT crystal structure a below the Curie temperature b above the Curie
temperature
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Table 3.1 Some properties of piezoelectric materials

Material PZT-5A PZT-5H PZT-8

d31 (Å/V) −1.75 −2.50 −1.00

d33 (Å/V) 3.90 6.50 3.00

d15 (Å/V) 5.70 7.30 3.25

T c (◦C) 360 220 300

Density (g/cm3) 7.7 7.7 7.6

Young’s modulus
(1010 N/m2)

5.7 6.3 8.9

Q 90 100 1,200

randomly oriented crystallites and second also within a single crystallite there are
different domains. Inside a domain the dipoles within the unit cell are oriented in
parallel, while differently oriented domains exist in one crystallite as in the case
of ferromagnetism. These domains are randomly oriented in the raw piezoelectric
material when it is cooled below the Curie temperature after sintering. Ferroelectric
ceramics become macroscopically piezoelectric when poled. This means an elec-
tric field (>2,000V/mm) is applied to the piezoelectric ceramics at temperatures
somewhat below the Curie temperature. Close to the Curie temperature the crystal
structure is almost cubic. With a field applied, the electric dipoles can switch (by
motion of the Ti atom) to one of the six possible directions (Fig. 3.5b) which lies
closest to the applied electric field. During poling, the domains can reorient and the
domain walls can also move. These domains stay roughly in alignment after cooling.
The material now has a remanent alignment of the dipoles, which can be degraded
by exceeding the mechanical, thermal and electrical limits of the material.

Somematerial properties of different piezoelectricmaterials are listed inTable3.1.
The PZT nomenclature for the materials in Table3.1 is an industry standard to which
several companies producing piezoelectric materials refer. However, the numbers
should be considered only as rough estimate since the actual values vary from man-
ufacturer to manufacturer. The Curie temperature Tc is the temperature above which
the material loses its piezoelectric properties irreversibly (like a ferromagnetic mate-
rial). Each material has a maximum operating temperature specified by the supplier,
which is often well below the Curie temperature. The mechanical quality factor Q
determines the sharpness of the mechanical resonance and the resonance amplitude
of an actuator made from this material.

The material properties of the piezoelectric materials are also temperature-
dependent. Most importantly the piezoelectric coefficients decrease for operation
at low temperatures as shown in Fig. 3.6 [3] for the example of PZT-5A. As a rule of
thumb, the piezo constants are for most piezo materials are roughly a factor of five
lower at the temperature of liquid helium than at room temperature.
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Fig. 3.6 Temperature
dependence of the
piezoelectric constants d31
for PZT-5A piezo ceramic
material relative to the room
temperature value (adapted
from [3])
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3.4 Tube Piezo Element

One central task in atomic force microscopy is to position the probe with an accuracy
of less than one tenth of an ångström in all three dimensions. The tube piezo element
(or tube scanner) is the most widely used actuator element to move the probe tip or
the sample in order to scan a surface (fine motion). One single tube piezo element
allows motions to be performed in three orthogonal directions. Further advantages
are high piezo constants and high resonance frequencies. The tube scanner consists
of a tube, made of piezoceramics (poled in radial direction), which is covered inside
and outside with metal electrodes. The outer electrode is divided into four quadrants,
as shown in Fig. 3.7. A motion in the z-direction (along the longitudinal axis) can be
achieved by applying a voltage between the inner and all outer electrodes (Fig. 3.7b).
A deflection in the xy-direction is induced by voltages of opposite polarity applied to
the two opposite outer electrodes Fig. 3.7c. Due to the transverse piezoelectric effect,
one segment of the tube extends along the tube axis, while the opposite segment
shrinks, giving rise to a bending of the upper part of the tube, as shown in Fig. 3.7c.
When a tube scanner is used to scan a tip, the tip (holder) is mounted axially on top
of the tube scanner.

The vertical displacement �L = �z of the top of the tube piezo element is cal-
culated using (3.3) (exchanging the definitions of the directions x and z), leading to
the following piezo constant

�z

�V
= d31

L

h
. (3.5)

In order to obtain the lateral displacement�x of the tube, we assume that the bending
of the tube follows a circular arc as shown in Fig. 3.8. From this figure, we identify
(due to the definition of the arc length) the bending angle as
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Fig. 3.7 a Photograph of
several tube piezo elements.
b Schematic side view of a
tube scanner showing the
vertical extension along z.
c Schematic of the lateral
movement in the x-direction

Dm

L

L

h

x

- Vx + Vx

Vz

(a)

(c)(b)

Fig. 3.8 Sketch of the
geometry of a bent piezo
tube with the relevant
parameters

L´

xtip

Ltip

L

R

x

α = L

R
. (3.6)

Further, we identify L ′ = L + �L , which can also be written as

L ′ = α

(
R + Dm

2

)
= L + α

Dm

2
. (3.7)
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This results in

α = 2
�L

Dm
, (3.8)

with Dm being the mean diameter of the tube. From Fig. 3.8 we also determine that
the cosine of the bending angle can be written as

R − �x

R
= cosα ≈ 1 − α2

2
. (3.9)

Thus, the x-deflection of the tube is given by

�x = Rα2

2
. (3.10)

Replacing R using (3.6) and (3.8) results in the following expression for the
x-deflection of the tube

�x = �LL

Dm
. (3.11)

For the length extension�L of the piezo tubewe canmake the simplified assumption
that it is the vertical length extension �z according to (3.5). With this assumption
the piezo constant for the x-deflection results as

�x

�V
= d31L2

Dmh
. (3.12)

A better approximation for the length extension �L , which considers non uniform
stress in the electrodes due to bending, is considered in AppendixA and results in
the following expression for the piezo constant for horizontal bending

�x

�V
= 2

√
2

π

d31L2

Dmh
. (3.13)

This equation corresponds to the bipolar operation of the tube where voltages −�V
and +�V are applied to opposite electrodes.

If we consider as an example particular dimensions of a piezo tube (PZT-5A)
as follows: length 25.4mm, mean diameter 5.84mm, wall thickness 0.51mm, this
results in a piezo coefficient for x and y directions of 725Å/V and for the z-direction
of 90Å/V. The most effective design parameter to tune the piezo coefficient is the
length of the tube, as the xy-piezo coefficient is quadratically dependent on the tube
length.

What we have considered up to now is the deflection of the top of the piezo tube.
However, if a tip is mounted on a scanner tube, it is usually mounted at a distance
L tip above the center of the piezo tube. In this case, an additional deflection �xtip
results, which can be written according to Fig. 3.8 and using (3.6), (3.8), and (A.5)
as [4]
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Fig. 3.9 Instead of an
outside electrode divided
into four segments the outer
electrode has eight segments.
The upper part of the piezo
is bent in the opposite
direction to prevent a
displacement in the
z-direction

+Vx

+Vx -Vx

-Vx

�xtip = L tip sinα ≈ L tipα = L tip
2�L

Dm
= L tip

4
√
2

π

d31L�V

Dmh
. (3.14)

Combining this with (3.13), the total piezo constant for the horizontal deflection
results in

�xtot
�V

= �x + �xtip
�V

= 2
√
2

π

d31Lpiezo

Dmh

(
Lpiezo + 2L tip

)
, (3.15)

denoting the length of the piezo tube as Lpiezo.
One disadvantage of the tube scanner is the fact that x, y and z motions are not

completely decoupled. The x , y motion acts approximately on a sphere. Therefore,
every lateral motion also results in a slight motion in the z-direction and vice versa.
This is because the tube scanner relies on bending and not on linear motion. There
is a method to prevent this coupling [5]. As shown in Fig. 3.9, a z displacement can
be prevented during an xy-motion by an opposite bending in the upper part of the
piezo which now has eight electrodes on the outer side. With this trick, a coupling
of the xy-displacement to the z-displacement is eliminated. The disadvantage of this
type of scanner is that the scan range in x and y direction is reduced by a factor of
two for a given piezo length. Also the electrode structure and the cabling are more
complicated.

3.4.1 Resonance Frequencies of Piezo Tubes

Here we summarize equations for the resonance frequencies of tubes, and also of
beams such as those used as cantilevers in atomic force microscopy, taken from [6].
These equations are obtained using the assumptions underlying the (classical) Euler-
Bernoulli beam theory, which are the proportionality of stress and strain (small
bending), as well as the condition that a plane cross section of the beam remains
plane under bending, i.e. shear deformations are ignored. As a boundary condition
it is assumed that one end of the tube (beam) is rigidly fixed to a rigid wall.
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The frequency of the i th longitudinal (axial) vibrational stretching mode of a rod
or tube with one end clamped and one end free is

fstretch,i = λi

2πL

√
E

ρ
, (3.16)

where L is the length of the beam, ρ is its volume density, and E Young’s modulus.1

The value of λi for the i th resonance is given by λi = π/2 · (2i − 1). For the lowest
resonance (i = 1) the stretching frequency results as

fstretch,1 = 1

4L

√
E

ρ
= c

4L
, (3.17)

where c is the longitudinal velocity of sound, which is given in long rods as c =√
E/ρ. For a mass M at the end of the beam (tube) the following expression holds

for the lowest axial resonance frequency

fstretch,1 ≈ 1

2π

√
AE

ML
, (3.18)

with A being the cross sectional (material-containing) area of the beam (tube).
The resonance frequencies of the bending modes of a beam (perpendicular to the

beam axis) clamped at one end and free at the other end are given by

fbend,i = λ2
i

2πL2

√
E I

ρA
= λ2

i κ

2πL2

√
E

ρ
. (3.19)

The values for λi are 1.875 and 4.694 for the first two modes, respectively. The
dimensions of the beam enter into the area moment of inertia (also called second
moment of inertia) I = ∫

x2dA, where x is the direction of bending. The expression√
I/A = κ is called the radius of gyration and has the following expressions: for a

circular rod κ = D/4, for a tube κ = √
D2 + d2/4, with D being the outer diameter

and d inner diameter. For a tubewith negligible wall thickness κ = D/(2
√
2) results,

and for a beam with rectangular cross section (with width w and thickness t) κ =
1
12wt3 results for bending in the direction of the thickness.

With an additional mass M at the end of the beam and the mass of the beam m,
the first resonance frequency can be expressed as

fbend = 1

2π

√
3E I

L3(M + 0.2357m)
. (3.20)

1In tables sometimes also the elastic compliance S is used, which corresponds to the reciprocal of
Young’s modulus.
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Simple numeric estimates for the resonance frequencies are obtained from these
equations. As an example, we consider the lowest bending frequency of a tube.
Following (3.19) the bending frequency results as

f tubebend = 0.56
√
D2 + d2

4L2

√
E

ρ
. (3.21)

For a PZT-5A tube with the dimensions length 12mm, outer diameter 3.2mm, and
inner diameter 2.2mm, the calculated resonance frequencies are 56 and 10.1kHz for
the stretching and the bending mode, respectively. These resonance frequencies can
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Fig. 3.10 a Schematic of themeasurement setup with an electric excitation of themechanic oscilla-
tion of a tube piezo element (bending mode). The amplitude of the mechanically excited oscillation
is detected by the piezoelectric effect. b Amplitude of the mechanic oscillation. Resonances are
observed at the first bending mode at 9.3kHz and at the second bending mode around 42kHz.
c Schematic setup for the excitation of the stretching mode. d The first stretching resonance fre-
quency is measured at 49kHz
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also be measured experimentally in a setup like the one shown in Fig. 3.10a. An AC
voltage is applied to one of the four outer electrodes. Due to the piezoelectric effect
the tube bends and a voltage is induced by the piezoelectric effect on the opposite
electrode (the two other outer electrodes and the center electrode are grounded, as
shown in Fig. 3.10a). This kind of excitation excites the bending modes. The first
bending resonance is measured at 9.3kHz (Fig. 3.10b), which corresponds roughly to
the calculated value of 10.1kHz. The higher frequencies around 42kHz correspond
to the second bending mode and do not correspond so well to the calculated value
of 62kHz. Figure3.10c shows the configuration for the excitation of the stretching
mode. The measured frequency of 49kHz corresponds roughly to the calculated
frequency of 56kHz.

Generally, the bending resonance frequencies are overestimated by the equations
for two reasons: the neglect of shear forces in the Euler-Bernoulli theory and the
idealized boundary conditions. At one end, the tube (beam) is considered to be fixed
rigidly to a stiff support. However, the support has some elasticity and, if the tube is
glued to the support, also its elasticity enters into the considerations.

If tube piezos have been depolarized, e.g. by too high temperature, they can
be repolarized by applying a DC voltage between the inner and outer electrodes
(the polarity should be the same as during poling, which is different for different
manufacturers). The necessary voltage depends on the wall thickness of the tube.
An electric field of about twice the coercitive field (cf. Fig. 3.11) should be used for
several hours at room temperature, or rather at elevated temperature but still below
the Curie temperature.
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Fig. 3.11 The butterfly curve of the piezoelectric material PIC 151 [2] for the applied field and the
displacement, both in 3-direction. The strain is shown in dependence of the applied electric field
for large electric fields. The corresponding polarization of ferroelectric domains is also indicated
in a simplified scheme. The butterfly curve shown here was kindly measured by aixACCT [7]
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3.5 Non-linearities and Hysteresis Effects
of Piezoelectric Actuators

The positioning performance of piezoelectric actuators is limited by the effects of
non-linearities, hysteresis, and creep, which will be discussed in the following. The
simplest non-ideal property of piezoelectric actuators is the non-linearity of the
motion as function of the applied voltage, as any linear effect becomes non-linear at
larger amplitudes. More complicated effects are hysteresis and creep, as they depend
on the history of the system.

3.5.1 Hysteresis

There are mainly two contributions which lead to a strain of a piezoelectric ceramic
in the presence of an outer electric field. The intrinsic effect results from the dis-
placement of the ions inside the crystal lattice in the presence of an electric field, as
shown in Fig. 3.2. This effect is approximately linear and non-hysteretic.

A second extrinsic contribution results from the reorientation of the ferroelectric
domains present in the crystal lattice. A ferroelectric ceramic consists of sintered
crystallites which have a random orientation of their crystalline lattice. Inside a
crystallite, ferroelectric domains with different orientations exist as follows. As seen
in Fig. 3.5, the Ti ion in the crystal lattice can move in six different directions, and
domains with six different orientations (ferroelectric domains) can exist in the crystal
lattice. The ferroelectric domains with their inner electric field in the up-direction
have lowest energy and the domains with anti-parallel orientation have the highest
energy. Thus, there is an energetic tendency for a reorientation of the domains parallel
to the applied electric field. However, there is also an intrinsic energetic barrier which
has to be overcome by the Ti atom when jumping from one of the six directions
to another one.2 With increasing and decreasing electric field the sizes of different
domains change. Due to the barriers which have to be overcome to reach a low energy
state, the inner state of the system (roughly the volume of each domain orientation)
depends on the history of the system leading to the hysterietic behavior.

Hysteretic behavior in general means that the response of the system (extension of
the piezo) does not only depend on the external conditions (applied electric field in our
case), but also on the internal state of the system (i.e. its history and here specifically
the state of the domain structure). The hysteresis behavior of a piezoelectric ceramic
is usually shown in a butterfly curve, where the strain is plotted in dependence
of the applied electric field (Fig. 3.11). This figure also shows a schematic sketch
of the polarization in the domains. The domains are considered to be square and

2In this simplified consideration, we have left out the formation energy of domain walls which
results in the formation of larger domains. Larger domains mean less domain wall energy. A further
contribution in the energy balance is the build up of mechanical strain inside the domains when an
external electric field is applied.
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Fig. 3.12 The displacement induced by an applied voltage also shows hysteretic behavior in a
range up to 200V for the applied voltage and the displacement, both in 3-direction. The average
piezo constant indicated by the dashed lines increases for increasing voltage amplitudes. Due to this
the piezo constants and the corresponding displacements can vary by 10–25%. The curves shown
here was kindly measured by aixACCT [7] on a PIC 151 ceramic [2]

aligned with respect to the applied field. Also only two of the six possible domain
orientations are considered. Point 1 corresponds to saturation polarization where
all domains are aligned and also corresponds to maximum strain. If the electric
field is subsequently reduced to zero the point of remanent polarization is reached
(point 2), where most of the dipoles are still oriented parallel to the outer field.
This state corresponds to a certain remanent strain. Between point 1 and point 2 the
strain is mainly induced by the intrinsic piezoelectric effect. When the electric field
changes orientation the domains also begin to reverse their orientation and the strain
is increasingly also induced by domain reorientation. Approaching point 3, the net
polarization of the domains is zero. With an increased electric field in the opposite
direction the domains begin to align to the opposite direction and correspondingly
the strain increases again to its maximum value (point 4). When the electric field is
subsequently reversed again, the strain follows a different curve from point 4 to point
5 to point 6 and to point 1. This means that the strain induced by domain reorientation
is subject to hysteresis, i.e. depends not only on the external applied electric field but
also on the history or the internal state of the system.

The butterfly curve shows the large signal response of piezoelectric ceramics.
The working range of piezoelectric materials is between point 1 and point 2 for
unipolar operation. For bipolar operation which is used to drive tube piezo elements
in scanning probe microscopy, point 3 must not be reached because it corresponds
to a depolarization of the piezo. Usually only electric fields substantially below the
point of depolarization should be used.

In Fig. 3.12, smaller voltage signals which are used for scanning in AFM are
shown together with the corresponding displacement. Also here a hysteresis is visible
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indicated by the lens-shaped curves which correspond to voltage sweeps form zero to
a maximal voltage and back to zero (indicated by the arrows). Such a voltage sweep
corresponds to scanning one line in an AFM image. Two effects are observed during
these voltage sweeps: first the displacement is different for increasing and decreasing
voltages and second this hysteresis increases for larger voltage amplitudes.

Due to this hysteretic behavior the piezo constant (displacement divided by volt-
age) is not constant anymore. The piezo “constant” depends on the applied voltage
and also on the history of the system (which voltages were applied before). If we
define the maximum displacement divided by the maximum voltage during one volt-
age sweep as average piezo constant for this voltage sweep, we see that this average
piezo constant increases with the voltage amplitude. This effect results from the
increasing contributions due to extrinsic domain reorientation at larger voltages. The
average piezo constants are indicated by dashed lines in Fig. 3.12 for the two volt-
age sweeps with smallest and largest amplitudes. The average piezo constant for the
smallest and the largest voltage sweeps in Fig. 3.12 differ by about 18% in this case.
This means that due to the effect of hysteresis the piezo constant and correspondingly
the piezo displacements vary by 10–25% for different voltages.

This variation (increase) of the piezo constant for larger voltages leads to signifi-
cant image distortions at larger scan sizes, visible for instance when imaging defined
gratings on the scale of several micrometers. The piezoelectric coefficients quoted
by the manufacturers of piezo elements are those in the small voltage limit.

3.5.2 Creep

When considering hysteresis (i.e. the domain orientation in dependence of the applied
electric field), always a very slow, quasi-static change of the electric field was consid-
ered. Since the domain reorientation is an energetically activated process, this process
also depends on time. In the case of an instantaneous change of the electric field,
the domain reorientation (domain wall motion) and the subsequent build-up of strain
(extension of the piezo) do not happen instantaneously but take some time after the
electric field has been established. As a result of a sudden jump in the voltage applied
to the piezo electrodes the change in position is not instantaneous. A certain time
dependence of the position, called creep, is observed. A measurement of creep (dis-
placement as function of time) for short times after an instantaneous voltage jump is
shown in Fig. 3.13. For an ideal piezo actuator without creep the displacement would
occur only at the time of the voltage jump and not change afterward.

In AFM, the creep results in an effect at the turning points of the scanning move-
ments of each scan line. A positive piezo extension still occurs due to creep, while
the voltage change has already reversed its direction. In the vertical direction creep
occurs after the (rapid) approach of the tip to the sample. During the approach pro-
cess, large variations of the z-position are usual and after the approach to the surface
a creep in z results.
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Fig. 3.13 Creep is the piezo
displacement after an
instantaneous voltage jump.
The curve shown here was
kindly measured by
aixACCT [7] on a PIC 151
ceramic [2]
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Creep and hysteresis are also the reason why in scanning probe methods two
successive scan lines should not be scanned in opposite directions (first line: +x ,
second line −x , …) but always in the same direction (first line: +x , second line +x ,
…) (no data are acquired while scanning backwards in the −x-direction). For lines
scanned in opposite directions, a mutual shift in the position of up to 20% would
result due to creep and hysteresis.

3.5.3 Thermal Drift

Thermal drift of the mechanical setup leads to image distortions. This is a general
effect on all mechanical components of the microscope, and is not limited to piezo
elements; specifically, when the sample has been previously annealed (for instance
in the process of sample cleaning). Usually it takes some time after approach before
the thermal drift is reduced sufficiently for imaging. In low temperature experiments
thermal drift is suppressed.

Due to all the above mentioned limitations of piezoelectric materials, piezoelec-
tric actuators operated in open loop (i.e. without an independent measurement of
the distance moved) are generally not suitable for an accurate positioning on the
nanoscale. Therefore, in atomic force microscopy the piezoelectric actuators are
often operated in closed loop. This means that the position of the actuator is mea-
sured independently (not relying on a proportionality between the applied voltage
and the distance moved). In a feedback loop the actual (measured) position is con-
trolled to the desired setpoint value. More details on the closed loop operation of
piezoelectric nanopositioners are discussed in Sect. 4.2.2.

An independent calibration of the piezoelectric actuators inAFM is obtained using
commercially available calibration grids for horizontal and vertical calibration [8].
In actual AFM scans of these structures of known height and width the piezoelectric
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actuators can be calibrated. If atomic resolution is achieved, the lateral calibration
can be performed by taking atomically resolved images of a known surface structure.
The vertical calibration can be performed at (single) monoatomic step edges.

3.6 Vibration Isolation

In order to keep the scanning probe stable with respect to the sample with an accuracy
of less than 0.1Å would (ambitiously) require a vibrational noise level of about a
factor of ten lower than this for the relative motion between tip and sample, i.e.
1pm. In this case, the usual amplitudes of building vibrations of ∼0.1µm have to be
reduced by a factor of 105 in order to obtain a sufficiently stable tip-sample distance.
As we will see in the following, to accomplish this task both good vibration isolation
and a rigid microscope have to be combined.

We will perform the analysis of the vibration isolation in two steps. In the first
step, we will consider the microscope as a rigid construction of mass m and ask:
How can this mass be isolated from outside vibrations? In the second step, we also
consider the microscope itself as a oscillating system where the tip oscillates against
the sample and we ask: How can these tip-sample oscillations be reduced?

3.6.1 Isolation of the Microscope from Outer Vibrations

If themicroscope is considered as a rigidmass, outside vibrations are transmitted from
the ground. An effective vibration isolation can be obtained by a spring suspension
(Fig. 3.14a). The microscope assembly (mass m) is fixed to a spring with spring
constant k. This harmonic oscillator has a resonance frequency of ωspring = √

k/m.
The damping of the oscillating system is described by the quality factor Qspring. An
external (sinusoidal) vibration z1(t) with amplitude z01 and frequency ω (vibration
from of the building floor) is coupled into the system (Fig. 3.14a). As a reaction to this
outside forced excitation, the mass m performs an oscillation z2(t) with amplitude
z02 at the driving frequency ω. We refer the motions z1 and z2 relative to a fixed (not
oscillating) reference system. The elastic force on the mass (stretching of the spring)
depends on the difference of the positions (z2 − z1). Thus, the restoring force of the
spring acting on the mass m is

Fspring = −k(z2 − z1), (3.22)

The anchoring of the viscous dashpot (Fig. 3.14a) corresponds to the situation
shownalso inFig. 2.4b and thus the frictional damping force depends on thedifference
of the velocities (ż2 − ż1). Therefore, the damping force Ffrict is
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Fig. 3.14 a Vibration isolation of a microscope (represented by a mass m) against external vibra-
tions z1 using a spring suspension. b Transfer function of the vibration isolation system for
Qspring = 5

Ffrict = −m
ωspring

Qspring
(ż2 − ż1). (3.23)

The equation of motion for the mass m reads now

mz̈2 = −m
ωspring

Qspring
(ż2 − ż1) − k(z2 − z1), (3.24)

or using ω2
spring = k/m, and reordered slightly results in
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z̈2 + ωspring

Qspring
ż2 + ω2

springz2 = ωspring

Qspring
ż1 + ω2

springz1. (3.25)

For a sinusoidal vibration of the frame z1 can be written in the complex notation
(skipping the tilde used for complex numbers in Sect. 2.4)

z1(t) = z01e
iωt , (3.26)

the steady-state solution for the motion of the mass m is

z2(t) = z02e
iωt . (3.27)

with z01 and z
0
2 being complex amplitudeswhich include a relative phase shift between

the two amplitudes.
Substituting (3.26) and (3.27) into (3.25) we obtain (again using the power of the

complex method: differentiation is just multiplication by iω)

− ω2z2 + i
ωspring

Qspring
ωz2 + ω2

springz2 = i
ωspring

Qspring
ωz1 + ω2

springz1. (3.28)

or
(

− ω2 + i
ωspring

Qspring
ω + ω2

spring

)
z02e

iωt =
(
i
ωspring

Qspring
ω + ω2

spring

)
z01e

iωt . (3.29)

Finally, we obtain

z02
z01

=
ω2
spring + i ωspring

Qspring
ω

ω2
spring − ω2 + i ωspring

Qspring
ω

. (3.30)

This ratio is still a complex number, since both amplitudes are complex quantities
having a real amplitude and phase. The ratio of the absolute values of the amplitudes
is called the transfer function of the vibration isolation system κspring(ω), which can
be written as

κspring(ω) =
∣∣z02∣∣∣∣z01∣∣ =

√√√√√√
ω4
spring + ω2

spring

Q2
spring

ω2

(ω2
spring − ω2)2 + ω2

spring

Q2
spring

ω2
. (3.31)

When expressed in terms of the normalized frequencyω/ωspring, the following expres-
sion for the transfer function results
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κspring(ω) =
∣∣z02∣∣∣∣z01∣∣ =

√√√√√√√
1 + 1

Q2
spring

(
ω

ωspring

)2

[
1 −

(
ω

ωspring

)2
]2

+ 1
Q2

spring

(
ω

ωspring

)2
. (3.32)

The response of the system to a driven oscillation κspring(ω) can be divided into
three regimes (Fig. 3.14b). For ω � ωspring the outside excitation is transmitted with
a transfer function of one, i.e. without any damping. For a frequency close to the
resonance frequency of the system (in resonance), the outside excitation is even
amplified, i.e. the vibrations are increased instead of damped. At ω = ωspring the
transfer function becomes

κspring(ωspring) =
√
1 + Q2

spring. (3.33)

In the regime ω 	 ωspring and Qspring very large, the transfer function (3.31)
reduces to

κspring(ω) ≈
(ωspring

ω

)2
. (3.34)

This shows that for excitation frequenciesωmuch larger than the resonance frequency
ωspring and for small damping, the external vibrations are suppressed∼1/ω2.We have
seen that damping (small Qspring-factor) avoids resonance excitation. However, on
the other hand damping deteriorates vibration isolation at higher frequencies. The
transfer function becomes ∼1/ω for Qspring = 1. In Fig. 3.15 the transfer function is
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Fig. 3.15 Transfer function of a spring suspension system for different values of the quality factor
Qspring
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shown for different values of Qspring. In typical spring suspension systems, a compro-
mise between good damping at high frequencies and large resonance enhancement
is chosen for Qspring ≈ 2 − 5.

The vibration isolation (for instance from building vibrations) will be better the
lower the resonance frequency of the spring system is. Therefore, the resonance
frequency of the spring system is the prime parameter of a vibration isolation system.
In the following, we will show that this parameter only depends on the extension
length of the spring �l.

Hooke’s law results in k�l = mg, with g being the gravitational acceleration. If
we insert the result form into the equation for the resonance frequency of the system
fspring = 1

2π

√
k/m the resonance frequency for the system can be written as

fspring = 1

2π

√
k

k�l/g
= 1

2π

√
g

�l
. (3.35)

To achieve a resonance frequency of 1Hz the spring should be stretched by 25cm.
To achieve a resonance frequency of 0.5Hz the spring has to be stretched by 1m.
This length is difficult to integrate in a system. Some reduction of the length of the
springs can be achieved by using pretensioned springs. Such springs are available in
principle, but, it is difficult to manufacture springs which simultaneously feature a
high pretension force and a low spring constant.

Note that the mass and the spring constant do not enter explicitly into the expres-
sion for the resonance frequency. This equation is the same as for a simple pendulum
with length �l. Therefore, a spring suspension system acts as a isolation device for
both vertical and horizontal environmental vibrations.

3.6.2 The Microscope Considered as a Vibrating System

In the second step of our analysis of the vibration isolation, we consider the micro-
scope itself as a vibrating system. While it is wise to couple the sample most rigidly
to the scanner/tip assembly, this (stiff) mechanical loop of the AFM (or generally the
scanning probe microscope (SPM)) can also be characterized as a vibrating system
with a (quite high) resonance frequency ωSPM and a quality factor QSPM (Fig. 3.16a).
The softest part in the mechanical loop is the piezo material with a typical quality
factor of 100. Let z2 describe the oscillation of the microscope support base (or sam-
ple in Fig. 3.16a), and z3 the vibration of the scanner/tip assembly. Here one point is
important (which makes life much easier): it is not the vibration amplitude of the tip
z3 that has to be reduced to a minimum but only the difference of the motion between
tip and sample z3 − z2. Only the relative motion between tip and sample counts! The
differential equation for the vibrating tip z3 relative to an external fixed reference is
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Fig. 3.16 a The scanning
probe microscope (SPM)
itself is considered as an
oscillating system
characterized by ωSPM and
QSPM. Tip and sample
oscillate against each other.
b Transfer function κSPM
according to (3.40) for the
microscope with resonance
frequency ωSPM
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z̈3 + ωSPM

QSPM
(ż3 − ż2) + ω2

SPM(z3 − z2) = 0. (3.36)

The spring force is proportional to z3 − z2 and the frictional force is proportional to
ż3 − ż2. Using the complex method to solve the differential equation results in

− ω2z3 + i
ωSPM

QSPM
ω(z3 − z2) + ω2

SPM(z3 − z2) = 0, (3.37)

or

− ω2z2 − ω2(z3 − z2) + i
ωSPM

QSPM
ω(z3 − z2) + ω2

SPM(z3 − z2) = 0. (3.38)

The (complex) ratio of the difference of the amplitudes z03 − z02 to the amplitude
of the base of the microscope z02 is obtained as

z03 − z02
z02

= ω2

ω2
SPM − ω2 + i ωSPM

QSPM
ω

. (3.39)
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The transfer function results in

κSPM(ω) =
∣∣∣∣ z

0
3 − z02
z02

∣∣∣∣ =
√√√√ ω4

(ω2
SPM − ω2)2 + ω2

SPM

Q2
SPM

ω2
. (3.40)

The resulting transfer function is plotted in Fig. 3.16b and can be approximated by

κSPM(ω) ≈
(

ω

ωSPM

)2

, (3.41)

for ω � ωSPM, and small damping, with ωSPM being the resonance frequency of the
SPM (mechanical loop between tip and sample). When the excitation frequency ω
is much lower than the resonance frequency of the microscope ωSPM, good damping
of the external vibrations is achieved. In Fig. 3.16b we use QSPM = 100, since the
material with the lowest Q-factor in the mechanical loop is the piezo ceramic, which
has a typical mechanical quality factor of about 100.

3.6.3 Combining Vibration Isolation and a Microscope
with High Resonance Frequency

The concept for an effective vibration isolation is to combine the two approaches and
use a low resonance frequency for the vibration isolation system and a high resonance
frequency for themechanical loop of themicroscope. According to (3.31), a vibration
of the framewith amplitude

∣∣z01∣∣ is transmitted to the SPMbasewith amplitude
∣∣z02∣∣ as

z02 = κspringz
0
1. (3.42)

(From now on, we consider the amplitudes as real and omit the absolute signs.) Fur-
thermore the vibration amplitude of the SPM base z02 induces (according to (3.40))
a relative amplitude between tip and sample of

z03 − z02 = κSPMz
0
2. (3.43)

In total, an outer vibration of amplitude z01 induces a relative tip sample vibration of
amplitude z03 − z02 as

z03 − z02 = κSPMz
0
2 = κSPMκspringz

0
1. (3.44)

Thus, the total transfer function can be written as

κtotal = z03 − z02
z01

= κSPMκspring. (3.45)
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Fig. 3.17 Transfer function
of the combined system κtotal
given by the product of the
individual transfer functions
of the spring suspension
system κspring and the SPM
itself κSPM for the case of
small damping, i.e.
QSPM = Qspring = 100
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The transfer function of the combined system is the product of the transfer functions
of the individual systems.

According to (3.34) and (3.41), the total transfer function can be approximated in
the frequency range ωspring < ω < ωSPM as

κtotal ≈
(ωspring

ω

)2
(

ω

ωSPM

)2

=
(

ωspring

ωSPM

)2

. (3.46)

This behavior of an approximately constant transfer function in between the reso-
nance frequencies ωspring and ωSPM can be seen in Fig. 3.17 in which the transfer
function is shown in the limit of negligible damping (QSPM = Qspring = 100).

If, for example, the resonance frequency of the spring suspension system is 1Hz
and the resonance frequency of the SPM is 1kHz, the overall transfer function for
intermediate frequencies has a constant value of 10−6, as shown in Fig. 3.17. If we
would be able to raise the resonance frequency of the SPM to 10kHz the total transfer
function for the transmission of an external vibration to the tip-sample distancewould
go to 10−8!

Next we consider more realistic transfer functions by including damping. For the
spring suspension system we consider Qspring = 5, while we assume QSPM = 100.
When damping is included the total transfer function is not constant anymore in the
range between ωspring and ωSPM. The total transfer function according to (3.31) and
(3.40) is plotted in Fig. 3.18 together with the individual transfer functions of the
spring suspension and the SPM. It is assumed that the SPM mechanical loop can be
approximated by a single resonance frequency 1,000 times higher than the resonance
frequency of the spring suspension. With this assumption, the transfer function stays
below the initial desired value of 10−5 up to ω/ωspring < 40. The quite high values of
the transfer function for higher frequencies (which arises due to the relatively strong
damping of the spring suspension) could be regarded as problematic. However, as
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Fig. 3.18 Transfer function
of the combined system κtotal
which is the product of the
individual transfer functions
of the spring suspension
system κspring and the SPM
itself κSPM
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we will see in the next section, the driving amplitude of the exciting floor vibrations
decreases at larger frequencies.

In summary, the spring suspension acts as a low-pass for vibrations with fre-
quencies smaller than the resonance frequencies of the spring ωspring, while it damps
the vibrations at larger frequencies. On the other hand, the SPM assembly acts as a
high-pass for vibrations with a frequency larger than ωSPM, while it damps the vibra-
tions at lower frequencies. The total transfer function is the product of the transfer

Copper

AFM

Long springs
inside tubes

Magnets

m

z1

z2

(a)

(b)

S      N

Fig. 3.19 a Principle of an eddy-current damping system with a magnet next to a conductor in
which the energy of the vibrations is dissipated as eddy currents.bPhoto of an eddy-current damping
system with isolating an SPM from outer vibrations
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functions of the spring suspension and SPM. In order to keep the total transfer func-
tion low at all frequencies, a low resonance frequency of the vibration isolation, as
well as a high frequency of the microscope mechanical loop are required.

The necessary damping of a spring suspension system is often performed by
eddy-current damping. When a conductor (usually copper) moves in a magnetic
field, damping forces are generated by eddy currents inside the conductor, as shown
in the schematic in Fig. 3.19a. An example of an eddy-current damping system is
shown in Fig. 3.19b. The disadvantage of a spring suspension system is the large size.
Another way of damping is to use a stack of metal plates separated by rubber (e.g.
Viton®) pieces, which act as springs and dampers simultaneously. A further method
of vibration isolation is to mount the SPM on pneumatic isolation legs (also used
for optical tables). A typical resonance frequency of such a table is 1–2Hz, and a
transfer function of smaller than 0.01 can be achieved for frequencies larger than
10Hz. A suppression of acoustic noise can be achieved by putting the AFM into an
acoustic enclosure or acoustic hood.

3.7 Building Vibrations

When we were mentioning that the amplitudes of building vibrations are of the
order of ∼0.1µm this value is an integral value obtained by integration over time or
frequency. In the previous section we have considered the frequency dependence of
the transfer of vibrations, however also the primary floor vibrations have a frequency
dependence. This frequency dependence of vibrational noise, can be expressed by
the noise spectral density (of the velocity v) Nv( f ), which is introduced in Sect. 5.5
and discussed in more detail in AppendixB.

Geophones (accelerometers) are typically used to measure the spectral density of
the velocity noise Nv( f ) of the building vibrations. In Fig. 3.20, the spectral density

Fig. 3.20 Velocity spectral
noise density Nv (RMS) of
the building vibrations
measured on the floor in a
building at the Research
Center in Jülich
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Fig. 3.21 Calculated tip-sample (z03 − z02) vibrational amplitude spectral density as a function of the
frequency f , obtained using the measured building vibrations and the appropriate transfer function
from Fig. 3.18. The amplitude spectral density of the building vibrations is shown as a red line. The
data are taken from Fig. 3.20 and extrapolated for higher frequencies. The green and blue curves
show the behavior with and without a spring suspension system, respectively

of the velocity noise of the building vibrations measured on a floor in a building
in Research Center Jülich is plotted as function of vibration frequency. The gen-
eral behavior is that the amplitude deceases with increasing frequency. The highest
values are observed for low frequencies around 1–2Hz with a value of Nv ≈
0.7µm/(s

√
Hz )

Building vibrations can be influenced by external conditions like nearby railway
lines or motorways. Also inside a building the building vibrations are increased by
compressors, large machines, and ventilation systems. As a general rule the intrinsic
building vibrations are more pronounced in higher floors and correspondingly lowest
in the basement of a building. For this reason, sensitive scanning probe microscopes
can be often found in the basement.

In order to convert the measured data from the velocity to oscillation amplitude
or acceleration, we recall that

z = z0 cos(ωt), (3.47)

v = ż = −z0ω sin(ωt) := −v0 sin(ωt), (3.48)

a = z̈ = −z0ω
2 cos(ωt). (3.49)

The same relations between amplitude, velocity and acceleration apply also for the
corresponding noise densities.3

Now we include the measured building vibrations in the vibration analysis. The
amplitude noise density Nz( f ) of the building vibrations z01( f ) can be calculated

3Note that accelerometers often measure the root mean square (RMS) amplitude which is smaller
than the peak amplitude by a factor of 1/

√
2.
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from the measured velocity noise density Nv( f ) (shown in Fig. 3.20) using (3.48).
According to (3.44), the relevant tip-sample vibrational amplitude z03 − z02 can be
expressed as a function of frequency as

z03 − z02 = κtotal( f )z
0
1( f ). (3.50)

If we multiply the total transfer function by the measured spectral density of the floor
vibration amplitude (derived fromFig. 3.20), the expected tip-sample spectral density
of the vibration amplitude arising due to the floor vibrations is shown in Fig. 3.21.
The case where no spring suspension is invoked is shown as blue line, leading to a
roughly constant tip-sample vibration amplitude density of Nz( f ) = 10−7 nm/

√
Hz.

This leads according to (5.14) to an RMS value of the tip-sample amplitude of
z03 − z02 = Nz

√
1 kHz = 3.16pm for a bandwidth of 1kHz.

The tip-sample vibrational amplitude is decreased further by invoking a spring
suspension, as shown by the green curve in Fig. 3.21. The building vibrations are
damped for frequencies larger than the resonance frequency, specifically also at the
resonance frequency of the SPM ωSPM. However, a spring suspension also leads to a
resonance at the natural frequency of the spring suspension system ωspring, which has
to be suppressed by proper damping of the spring suspension system. The decrease
of the tip-sample vibration amplitude above the resonance frequency of the spring
suspension system can result in RMS values of the vibration amplitude substantially
below one picometer for a bandwidth of 1kHz.

3.8 Summary

• Due to the piezoelectric effect a voltage applied to the electrodes of a piezoelectric
element leads to a strain, i.e. a motion of some part of the element.

• The piezo constant describes the sensitivity of a piezoelectric actuator in Å/V.
• The most frequently used piezoelectric actuator element in scanning probe
microscopy is the tube piezo element. It allows x , y, and z-motion with one single
element.

• Problems with piezoelectric actuators are the coupling of lateral and vertical
motion, non-linearity, hysteresis, and creep.

• Sharp SPM tips can be fabricated by self-adjusting electrochemical etching.
• The resonance frequency of a spring suspension system depends only on the exten-

sion length �l as ωspring =
√

g
�l .

• It is not necessary to minimize the amplitude of the tip vibration and the sample
vibration individually but only the difference between tip and sample position.

• For effective vibration isolation a low resonance frequency of the spring suspension
system ωspring is combined with a high resonance frequency of the SPM assembly
ωSPM, i.e. a stiff mechanical loop between tip and sample.
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• The transfer function (i.e. the attenuation of external vibrations) is constant for

small damping κtotal ≈
(

ωspring

ωSPM

)2
for ωspring < ω < ωSPM.

• The expected tip-sample vibration amplitude can be calculated by multiplying the
total transfer function by the (measured) building vibration amplitude.
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Chapter 4
Atomic Force Microscopy Designs

The design of an AFM has to enable two different tasks: First it has to allow for
a xyz-motion during scanning (fine motion, or scan motion), for the acquisition of
the surface topography. As the range of the piezo actuators performing this motion
is limited to usually <100µm, the second task of an AFM design is to bring the
cantilever tip and the sample initially so close together, that their distance is within
the range of the z-fine motion. This task is called the coarse approach. Both of
these tasks have to be satisfied while simultaneously maintaining a stiff mechanical
structure with high resonance frequencies allowing for good vibration isolation and
small (thermal) drift of the tip relative to the sample. In this chapterwe discuss several
types of coarse positioners as well as scanners for the fine motion and introduce the
principles of some particular AFM designs.

4.1 Coarse Positioners

A standard way to achieve coarse positioning between the cantilever tip and the
sample in AFM is the use of a fine thread screw which is driven by a stepper motor.
Sinceboth components of such a coarse positioner arewidespread industrial products,
we do not discuss this type of coarse positioning here in more depth. Instead we
discuss here the working principle of inertial sliders, which are used for coarse
positioning purposes in atomic force microscopy as well.

4.1.1 Inertial Sliders

How an inertial slider works in principle can be easily grasped by the following
experiment: Place a sheet of paper on a table and place a coin on the paper. Now
you can move the coin without touching it by shaking the paper on the table with
your hand in a saw-tooth pattern, i.e. quick in one direction and slow in the opposite
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direction. The coin will stay in frictional contact with the paper during the slow
movement (small slope part of saw-tooth motion) and move together with the paper.
However, during the steep slope part of the saw-tooth motion the frictional contact
between the coin and the paper will disengage due to the inertia of the coin and the
coin will not move (or move only slightly) relative to the table. This simple principle
is the basis for many nanopositioners.

All these inertial sliders consist of two essential parts: a mover which is moved by
a piezo actuator relative to a reference frame and an object to be moved called slider
in the following [1]. This very general configuration of an inertial slider is shown in
Fig. 4.1a. The term inertial slider is used because inertia is important for the function
of these devices. Inertia is the “resistance” of a mass to change its state of motion.
Newton’s first law, which is also called the law of inertia, states that if no force acts
on a mass this mass will not change its velocity due to its inertia. In the following we
describe the motions from an external fixed inertial frame (support). We also assume
that the friction forces do not depend on the velocity but that they are proportional
to the normal force which the slider exerts on the mover.

The force accelerating the slider mass is transmitted from the mover via the
frictional surface to the slider. The slider stays in frictional engagement with the
mover if the static friction force F stat

frict is larger than the force on the slider due to its
acceleration as

m amover = m aslider < F stat
frict = m astatfrict = µstat m g, (4.1)

with µstat being the coefficient of static friction of the frictional surface, m the mass
of the slider, and g the gravitational acceleration. Since µstat is of the order of one,
the acceleration of the mover must be roughly smaller than g in order to remain
in frictional engagement. In this phase of motion, called “riding phase”, the slider
moves together with the mover.

The frictional surface remains in static frictional contact if forces smaller than the
threshold force F stat

frict are applied. If however, m amover > F stat
frict the frictional contact

disengages, transforms to a sliding frictional contact and the slider will not move
together with the mover (Fig. 4.1b). The necessary accelerations larger than g can
be easily reached by piezoelectric actuators with their resonance frequencies in the
kHz range. If the frictional engagement at the friction surface is lost, only the smaller
kinetic frictional coefficient µkin acts at the frictional surface and the force acting on
the slider reduces to

m aslider = Fkin
frict = µkin m g. (4.2)

The direction of this force due to the kinetic friction (positive/negative) corresponds
to the sign of the relative velocity vmover − vslider.

In Fig. 4.2 the position, the velocity and the acceleration of the mover and slider
relative to an external reference are shown during the “riding phase” and the “sliding
phase”. The saw-tooth signal of the mover is approximated by a small slope and a
large slope segment. The sharp corners (which are rounded in reality) give rise to an
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Fig. 4.1 Operating principle of an inertial slider. a Riding phase: mamover ≤ Fstatfrict = µstat mg.
b Sliding phase: mamover > Fstatfrict . c Inertial slider with spring

acceleration at these points. Due to the small slope of the position in the riding phase,
the peak in the acceleration at time zero is smaller than the threshold acceleration
astatfrict, and the slider stays in frictional engagement with the mover. During the riding
phase, mover and slider are in static frictional contact and move with the same
constant velocity. The acceleration is zero and the position changes linearly for both
the mover and the slider. When the saw-tooth signal changes from the small slope
(“riding phase”) to the steep slope (“sliding phase”), the mover accelerates for a short
time (negative spike in the acceleration, Fig. 4.2c) and the static frictional contact is
lost. After this transient state, the mover acceleration is zero again and the mover
now has a high (constant) velocity, the mover position changes linearly with a large
slope. During the acceleration peak of the mover, which is (much) larger than the
threshold acceleration astatfrict, the slider loses static frictional contact. Now a negative
force due to the kinetic friction acts on the slider according to (4.2). This leads to a
linearly decreasing velocity of the slider. During this deceleration due to the kinetic
friction the position of the slider develops as shown in Fig. 4.2a.

When the velocity of the mover stops (at time 1 in Fig. 4.2) there is another sharp
(this time positive) spike in the acceleration of the mover. The slider continues to stay
in kinetic friction anddecelerates from the velocitywhich it acquired during the riding
phase until the slider stops. Now the slider engages with the mover again, i.e. the
frictional surface transforms to static friction. After the completion of a sequence, the
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Fig. 4.2 Position, velocity and acceleration of the mover and the slider during inertial motion as a
function of time relative to an external fixed support

slider has moved relative to the mover by a certain distance as indicated in Fig. 4.2a.
In reality, the sliding phase occurs in a much shorter time relative to the riding phase
than shown in Fig. 4.2. Also the transitions between the different regions are not sharp
but rounded and the acceleration during the steep slope segment of the saw-tooth
signal does not vanish.

Here we note two points resulting from the detailed analysis. First, the motion of
the slider is not zero during the sliding phase, but it decelerates from the velocity
during the riding phase to rest. This deceleration is induced by the kinetic friction
force which acts during the sliding phase. The second point is that during the sliding
phase no acceleration of the mover is required (apart from the initial transient, which
leads to a transition from static friction to kinetic friction).Alsowith zero acceleration
during the sliding phase the slider moves relative to the mover.

Inmost inertial sliders, the force normal to the frictional surface F⊥ is not supplied
by the gravitation (as assumed up to now), but by other means like magnets or
springs as shown in Fig. 4.1c. This has the advantage that the inertial slider can
work in any orientation if F⊥ � m g. In this case, the maximal static frictional force
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F stat
frict = µstatF⊥ is independent of the mass of the object to be moved and frictional

engagement is lost if
m amover > F stat

frict = µstat F⊥. (4.3)

In order to lose frictional contact (to go into sliding phase) m amover has to be larger
than the static friction force F stat

frict. This means that either the mass m of the slider
or the acceleration of the mover amover has to be large in order to fulfill the relation
m amover > µstatF⊥. There are certain limits to the acceleration of the mover. The
first fundamental limit is that the mover cannot be moved at frequencies higher
than the resonance frequency of the mover (or rather the combined system of piezo
actuator and mover). Another effect which limits the acceleration of the mover is the
speed at which the power supply of the piezo actuator can pump charge to the piezo
element. A piezoelectric actuator can be considered from the electrical viewpoint
as a capacitor which is charged quickly during the steep slope segment of the saw-
tooth signal. The slew rate is the maximal voltage change per time provided by
the power supply for a certain piezo capacity. Assuming now a certain maximum
limit for the acceleration of the mover (given by the resonance frequency or the
slew rate of the power supply), the mass of the slider m is the free parameter which
can be tuned (increased) in order to raise the force m amover above the limit for
sliding µstat F⊥. This means a certain (minimum) mass of the slider is needed for
operation of the inertial slider. In practical applications for nanopositioning systems
a high mass of the slider has several disadvantages. Ideally, the size of inertial sliders
used for nanotechnology should be as small as possible. However, a certain mass
(corresponding also to a certain size of the slider) is needed for operation of the
inertial motion, as stated above. Another reason for a small mass of the slider is that
a largemass also intrinsically leads to undesired low eigenfrequencies (ω0 = √

k/m).
Therefore, the high mass required for the operation of the inertial motion contradicts
the requirement of a small mass for small devices with high eigenfrequencies and
an appropriate compromise between these opposing demands has to be found. Later
we will also introduce nanopositioners which do not rely on inertia.

A practical implementation of an inertial slider as nanopositioner is shown in
Fig. 4.3 [2]. On a baseplate three shear piezo elements are mounted which provide
motion up to about one micrometer in one direction. On top of the shear piezo
elements, hemispherical balls are mounted, usually made of hard materials like ruby,
sapphire, or stainless steel. These three balls correspond to the mover in the previous
discussion. The slider is held by magnetic force on top of the three balls. Small
magnets in the middle of the baseplate exert a force onto the magnetic slider, which
rests firmly on the three balls. The motion of the slider is guided along one direction
by a groove in the slider in which two of the three balls are resting. A saw-tooth
pattern of motion is applied to the piezo elements and leads to a motion of the slider
along one direction, as described above. The step size of an inertial slider can be
chosen down to the nanometer range, but also larger step sizes (micrometer) are
possible and allow quick positioning even in the millimeter range.



74 4 Atomic Force Microscopy Designs

Fig. 4.3 Sketch of an
inertial slider (length 35mm)
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4.2 AFM Scanners

After the cantilever tip and the sample have been brought together, using the coarse
positioner, within the range of the fine positioners, the other task which has to be
preformed by an AFM is the fine scanning motion in all three spatial directions. In
several AFM designs the tube scanner is used for the fine scanning motion. We have
discussed the tube scanner in detail in Sect. 3.4. Here we discuss the flexure-guided
piezo actuator and present briefly different types of position sensors which are used
for the closed loop operation of AFM scanners.

4.2.1 Flexure-Guided Piezo Nanopositioning Stages

A popular continuously moving nanopositioning system uses flexures to guide the
motion. It relies on the elastic deformation of a spring-like solid metal structure
which confines the motion in only one direction and is driven by a piezo element.
The working principle can be seen in Fig. 4.4a. In a metal block, small trenches are
cut by wire EDM (Electrical discharge machining). These trenches are shaped in a
meandering way so that they act as hinges and allow a spring-like motion along one

(a) (b)

Piezo
Piezo

Sensor Mechanical lever

Fig. 4.4 a Flexure-guided piezo nanopositioning xy-stage with position sensors included. b
Flexure-guided piezo stage with an integrated mechanical lever amplifying the motion
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direction for the material inside, while being stiff along the orthogonal direction.
A second set of trenches forms flexures to guide the motion along the orthogonal
direction. Due to the relatively thick plate (∼10mm), such a flexure structure is also
stiff in the vertical direction. Stacks of piezo elements (blue in Fig. 4.4a) are used
to move the flexures. As the mass of the inner part moved is smaller than the mass
of the outer part moved, the inner part has a higher resonance frequency. Due to the
higher resonance frequency the inner part is used for the motion along the fast scan
direction. Often a mechanical lever is included in the flexures (Fig. 4.4b) in order to
amplify the motion ranges up to about hundred micrometers.

In order to allow for a closed loop operation, position sensing detectors e.g. capac-
itive position detectors can be integrated in the flexure stage to allow a precise mea-
surement of the motion (shown schematically in green in Fig. 4.4a. One disadvantage
of the flexure-guided piezo nanopositioning stages is that they are relatively large
and have a high mass compared to e.g. a tube scanner.

4.2.2 Closed Loop Operation of Piezoelectric
Nanopositioners

A general problem of piezoelectric nanopositioners used as scanners in AFM is the
non ideal behavior of piezoelectric materials. Non-linearity, hysteresis, and creep of
the piezo elements lead to the effect that the applied voltage is not directly propor-
tional to the elongation of the piezo element (as discussed in Sect. 3.5).While a simple
non-linearity could be compensated by a proper non-linear calibration between the
applied voltage and the distance moved, hysteresis and creep are much more difficult
to compensate for, as they depend on the history of past voltages which have been
applied to the piezo element.

In order to compensate for all non-ideal effects of piezoelectricity, a closed loop
operation is required. This means that a position sensor measures the actual distance
the piezoelectric nanopositoner moved and in a feedback loop, the voltage at the
piezoelectric actuator is adjusted such that the measured displacement of the actuator
reaches the desired displacement. This is the best way to eliminate all effects of piezo
hysteresis and creep. However, the measurement of the piezo extension results in
larger sizes of the piezoelectric actuator. Also an increased number of cables and
additional control electronics are needed. Nowadays, closed loop operation is often
used in atomic force microscopes.

Position sensors can be easily integrated in flexure guided nanopositioning stages,
as schematically indicated in (Fig. 4.4a). In the following we list some types of
position sensors;more information can be found in [3]. Generally, contactless sensors
are distinguished from sensors which require contact to the nanopositioner.

Resistive strain sensors or strain gauges require contact to the nanopositioner.
They consist of a thin layer of conducting foil laminated between two insulating
layers. As the strain gauge is elongated, the resistance increases proportionally. Such
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Fig. 4.5 Capacitive sensor in front of a target surface whose motion has to be sensed. The guard
electrode leads to a more uniform electric field between the probe electrode and the target (left side
view, right perspective view)

strain sensors have to be glued to the piezo element or a strained part of a flexure
stage.

A second type of strain sensor is the piezoresistive semiconductor strain sensor.
It consists of a planar n-doped silicon resistor with heavily doped contacts. When
the sensor is strained, the electron mobility increases, reducing its resistance.

A third type of strain sensor is a piezoelectric strain sensor. In this type of stain
sensor the piezoelectric effect is used the other way around than for piezoelectric
actuators: A strain in a piezoelectric strain sensor leads to a voltage proportional to
the strain, which is measured.

These types of sensors do not measure the distance moved directly, but the strain
developing at the surface they are fixed to. Therefore, the stiffness of the strain gauge
has to be much lower than the stiffness of the nanopositioner to which they are fixed.
This is the case for flexure stage and piezo stacks. In the following we mention some
types of position sensors which work contact-less.

In a capacitive sensor, the probe electrode forms a plate capacitor together with
a surface of the moving object (grounded), as shown in Fig. 4.5. In order to reduce
the stray fields at the edge of the probe electrode, a guard electrode, on the same
electric potential as the probing electrode is used. A measurement of the capacitance
can be performed for instance by applying an AC voltage to the probe electrode
and measuring the resulting current. The distance (change) between the capacitor
plates is obtained by the distance dependence of the capacitance of a plate capacitor.
Capacitive position sensors measure distances contact-less and can be for instance
integrated in flexure stage and in other nanopositioners using piezo stacks.

An eddy current sensor consists of a coil in front of a conducting target. When
the coil is excited by an AC current an eddy current is induced in the target. The
corresponding AC resistance depends on the magnitude of the eddy current, which
in turn is distance dependent.
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Linear variable displacement transformers (LVDT) consist of three coils (or some-
times only two coils) moving relative to a cylinder made from magnetically high
permeable material, as shown in Fig. 4.6. An AC driving current in the center coil
leads to a magnetic flux in each of the sensor coils. As the core moves, the flux
through each sensor coil changes proportional to the length the inner cylinder moves
in the coil. Thus, the displacement of the core is proportional to the difference of the
voltages induced in the sensor coils.

Here we mention very briefly also two types of optical position sensors, while
more information can be found in [3]. Laser interferometers can be used as position
sensors; fiber interferometers are used due to their compactness. The very simplest
form of an optical linear encoder can be imagined like the AFM beam deflection
method with a laser beam reflecting from a scale bar (as shown in Fig. 4.7) and a
photo-detector measuring the intensity of the reflected beam. If the scale bar consists
of an periodic array of stripes of different reflectivity, the intensity measured in
the photo-detector oscillates periodically as the scale bar is moved. Real optical
linear encoders are somewhat more elaborated and provide also an absolute distance
information.A comparison of the different types of position sensors, alsowith respect
to their resolution can be found in [3].
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4.3 AFM Design with a Tube Scanner

The principle of a design of an AFM with a tube scanner, like the multimode AFM
(Bruker [4]), is shown in Fig. 4.8. This type of AFM consists of three units: the head
with the optical beam deflection unit and the cantilever, the piezo tube scanner with
the sample, and the base with the stepper motor used for coarse approach.

The head houses components for the optical beam deflection detection. The beam
from a laser diode is reflected and focused on the reflecting back of the AFM can-
tilever. The laser beam is adjusted under control of an optical microscope which is
mounted above the head. The laser beam reflected from the back of the cantilever is
adjusted to the center of a position sensitive photo-detector. The cantilever itself is
attached to a larger handle part (cantilever chip) which can be inserted using tweezers
into a cantilever holder which in turn is inserted into the head. The cantilever holder
comprises also a dither piezo element which is used to oscillate the cantilever in the
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Fig. 4.8 Design principle of an AFM with a tube scanner. The main parts are the optical head, the
scanner and the base unit
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dynamic modes (yellow in Fig. 4.8). On the bottom of the head an xy-motion stage
is attached which can move the cantilever tip with respect to the sample and thus
allows AFM imaging of the desired location on the sample.

The top part of the scanner housing has three balls on which the bottom of the
head is fixed by springs. One of these balls can be moved up and down by a fine
pitch thread allowing for the coarse motion between cantilever tip and sample. The
scanner unit consists of a cylinder which houses a tube scanner, which is used for x ,
y, and z fine motion. The tube scanner is segmented into two sections along its axis.
The segment closer to the cantilever (upper part) is used to control the vertical tip-
sample motion (z-direction), while the lower part is segmented into four quadrants,
which allows lateral motion (xy-scanning) (Fig. 4.8). The z-extension part of the
tube piezo element acts as a lever to enhance the lateral motion. Different scanners
can be inserted with different xy-scan ranges, the smaller scan ranges (less than a
micrometer) allow for higher resolution operation down to atomic resolution, while
scanners with a larger xy-scan range are required if correspondingly larger areas of
the sample have to be imaged. The sample is mounted on top of the piezoelectric
tube scanner. The scanner unit is mounted on top of the base unit of the instrument
which houses the stepper motor used to drive the coarse approach.

4.4 AFM Design with Scanners Operating in Closed Loop

The scanner described above is open loop, i.e. without position sensing, however,
also closed loop scanners are available [5, 6]. The advantage of closed loop operation
is obvious: Not relying on the voltage applied to the piezo element, but having an
independent information about the position of the object to be moved, based on an
actual measurement of the position. Due to this, image distortions resulting from
hysteresis and creep of the piezo actuators are avoided.

The design principle of an AFM with closed loop operation is shown in Fig. 4.9.
The sample is attached to an xy-flexure stage with integrated position sensors. The
optical detection stage is attached below a z-flexure stage which is driven by a piezo
element on top, as shown in Fig. 4.9. A position sensor of one of the types mentioned
above is used to operate the z-positioning of the cantilever tip relative to the sample in
closed loop. This closed loop operation allows tomeasure the true sample topography
in all three directions.

The coarse approach mechanism is included by a fine thread screw and a stepper
motor moving the head relative to the xy-scanning stage.

In this design thewhole optical system,which has a considerable weight, ismoved
up and down when following the surface topography together with the cantilever in
z-direction. This leads to a relatively low resonance frequency of this z-stage and thus
environmental vibrations are transmitted with a larger amplitude to the tip-sample
distance, as discussed in Sect. 3.6.

This can be improved by the design used e.g. in the Asylum Cypher AFM [5],
or in the Park NX10 AFM [6], as shown in Fig. 4.10. Here the cantilever is coupled
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Fig. 4.9 AFM design with closed loop flexure scanners in xy-directions as well as in z-direction

to the scanner/sample stage by a small (low mass) and high stiffness mechanical
loop, highlighted in red in Fig. 4.10, avoiding the large mechanical loop shown in
blue in Fig. 4.10. In this mechanical loop the fine z-motion for the scanning can
consist of a small z-flexure stage (or piezo stack), highlighted in orange, with an
integrated position sensor, highlighted in green. Further, a coarse motion between
the cantilever stage and the scanner/sample stage is needed in order to disengage tip
and sample in order to allow for an exchange of the sample or the cantilever. This
z-coarse positioning can be realized with a fine thread screw moved by a stepper
motor. In this design the optical system is not moved together with the cantilever
and the cantilever moves relative to the optical system during scanning. However,
this z-motion of the cantilever does not have a large influence on the sensor signal
of the photo-detector: A pure z-motion is suppressed by a large factor relative to the
signal on the photo-detector which is resulting from a bending of the cantilever, as it
is the case for the topography signal (this is discussed in detail in Sect. 11.5). If the
laser beam is directed towards the cantilever from the top along the z-direction, it
will always illuminate the same position on the cantilever independent of the height
of the cantilever.
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4.5 AFM Designs for Large Samples

In the AFM designs discussed until now the sample was scanned in xy-direction.
Due to this the sample size is limited to relatively small samples on the order of
10mm size. For large (>100mm) or heavy samples different designs are used in
which the sample is fixed and the cantilever (tip) is scanned [4]. In this case also
the laser beam which is focused to the back of the cantilever has to be scanned with
the cantilever, as the width of the cantilever can be smaller than the scan width.
This does not necessarily mean that the whole optical system has to be moved in
xyz during scanning. It is sufficient that the lens focusing the laser beam on the
cantilever is scanned together with the cantilever. The xyz-scanning of the cantilever
can be performed either by a tube scanner as the one shown in Fig. 4.8, or by a small
xyz flexure stage. In order to allow for closed loop operation position sensors are
included.
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4.6 AFM Designs for Vacuum Operation

While most AFMs are operated in air, some AFMs are operated in vacuum or even in
ultrahigh vacuum (UHV). Here the beam deflection method is less common, as the
adjustment of the optical path is more difficult in vacuum and some components used
at ambient conditions, like steppermotors,maybe not vacuumcompatible. In vacuum
conditions often quartz sensors are used as AFM sensors instead of cantilevers. The
use of piezoelectric quartz sensors for AFM detection is described in more detail
in Chap.18. The oscillation of these quartz sensors can be excited and detected
completely electrically without the need of any optical system. Due to this, the design
of AFMs using quartz sensors is basically very similar to the design of a scanning
tunneling microscope (STM). The only differences are that instead of an STM tip a
somewhat larger quartz sensor is used and secondly two electrical connections are
required, one for the excitation and one for the detection. Often the inertial sliders
discussed in Sect. 4.1.1 are used for AFM designs in vacuum. We discuss here two
SPMdesigns which can be used together with a quartz sensor as anAFM.One design
is based on inertial sliders and one design does not rely on inertial sliders.

4.6.1 Pan Slider

The Pan slider is an SPM design with very high rigidity which is mainly used in
vacuum and cryogenic environments [7]. It was named after Shuheng Pan, who
invented the design. The moving part is a sapphire prism containing a tube piezo
scanner which in turn holds a quartz sensor (e.g. tuning fork) plus a tip (cf. Chap.18).

Sample

Tube scanner

Macor body

Sapphire prism
Shear piezo
stacks

Tip on quartz
sensor

Spring plate

Fig. 4.11 Pan SPM design using shear piezo elements in order to move a sapphire prism on which
a tube scanner is mounted
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The stepping is actuated by six shear piezo stacks, as shown in Fig. 4.11. Four of the
shear piezos are mounted on the interior of aMacor® body. The other two are pressed
against the sapphire prism by a spring plate. With this construction the pressure on
the six piezo stacks is approximately equalized. The working principle of this walker
is inertial motion. First the shear piezo elements are moved quickly, so that the prism
does not move (sliding phase). Then the piezos are moved slowly (riding phase). An
appropriate material combination for a reliable slip-stick is given by an alumina plate
mounted on top of the shear piezos.While the original design did not allow for coarse
xy-motion of the sample relative to the tip, it can be upgraded by an xy-moving table
below the sample usually constructed using shear piezo elements.

4.6.2 KoalaDrive

The coarse positioning unit takes up most space in a scanning probe microscope.
An ultimately small SPM design can be reached if the coarse approach of the tip
towards the sample is integrated inside a piezo tube scanner. However, here the
inertial slider principle is not optimal. In order to function, an inertial slider needs
inertia, i.e. a certain mass, which works against the desired miniaturization. Also the
large acceleration required to move an inertial slider induces a lot of shaking of the
whole mechanism. The KoalaDrive, which avoids all inertial motion was constructed
at Jülich by Vasily Cherepanov et al. [8].

The task of the KoalaDrive nanopositioner is to move a rod along its axis, as
shown in Fig. 4.12. For use in an AFM a quartz sensor is fixed to the end of the
rod. The KoalaDrive consists of two tube piezo elements mounted one after the
other, as shown in Fig. 4.12. At the ends and between the two tube piezos, three
springs are mounted, holding a central rod. The upper two springs shown in Fig. 4.12

sgnir ps

rod

2
ozeip

1
ozei p

step 1 step 2 step 3

Fig. 4.12 Working principle of the KoalaDrive: concerted interplay between static friction and
sliding friction. If only one spring moves, the rod is held stationary by the other two (step 1 and
step 2). The motion of the springs during the different steps of a cycle is indicated by arrows. If
two springs move simultaneously, the central rod moves together with them (step 3)
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can be moved by an extension or compression of the tube piezos along their axes.
The working principle of the KoalaDrive relies on concerted consecutive motions in
which the frictional surfaces between a spring and the rod alternate between static
friction and sliding friction. Whenever only one spring moves, the other two will
hold the rod (by static friction) and only at the single moving spring the frictional
engagement will be lifted and sliding friction will occur. One cycle of motion is
shown in Fig. 4.12. In step 1 of the cycle, the upper piezo element contracts and the
upper spring goes into sliding friction. The central rod is kept stationary by the lower
two springs, which stay in static friction with the rod. Subsequently, in step 2 the
middle spring moves downwards, while the upper and the lower spring remain in
their positions. For the upper spring, this is realized by a simultaneous contraction of
the lower piezo element and a corresponding expansion of the upper one, leaving the
upper spring unmoved. Also here a single spring (middle one) moves, while the two
others keep the rod fixed. Finally, in step 3 the lower piezo extends and moves the
two upper springs up simultaneously. In this case, the lower spring goes into sliding
friction and the upper two springs move the rod up (static friction). In simplified
terms, the working principle follows the rule: “Two are stronger than one”. If two
springs move simultaneously, the central rod moves with them. If only one spring
moves, the rod is kept stationary by the other two.

One single cycle can induce amotion in the range between severalµmand 100nm,
which is ideally suited for a coarse approach in scanning probe microscopy. A long
stroke, only limited by the length of the rod, and speeds up to 1mm/s are possi-
ble. Most other nanopositioners used for tip-sample approach in scanning probe
microscopy under vacuum conditions use the inertial motion with sawtooth-like sig-
nals inducing large accelerations causing vibrations in the system. The operating
mode of the KoalaDrive is quasi-static (one cycle can even last several seconds)
leading to a continuous motion without shaking, thus avoiding large accelerations.
Movies of the motion of the KoalaDrive measured using an SEM during one cycle
of motion are available on the internet at www.mprobes.com/koaladrive.html. These
real-time movies show the motion of a tip attached to the central rod.

In the next step, the KoalaDrive can be used to build an ultra-compact SPM.
The KoalaDrive is used for the tip-sample coarse approach and is integrated into a
segmented scanning tube piezo element used for the xyz-scanning fine motion as
shown in Fig. 4.13a. The SPM is completed by attaching quartz sensor with a tip (plus
a holder) to the central rod and an outer frame, which holds the sample, as shown in
Fig. 4.13a. Since the coarse approach mechanism is integrated into the piezoelectric
tube scanner, no extra space for the coarse approach is required. Thus, this design
leads to an SPM of minimal size: A complete SPM scanner can be integrated inside a
piezo tube of 6mm outer diameter and 12mm length. In Fig. 4.12b, a photograph of
an actual KoalaDrive SPM is shown. The use of the KoalaDrive makes the scanning
probe microscopy design ultra-compact and leads accordingly to high mechanical
stability.

www.mprobes.com/koaladrive.html
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Fig. 4.13 a Design of an AFM using the KoalaDrive leading to an AFM of minimal size. b
Photograph of an actual KoalaDrive SPM

4.6.3 Tip Exchange

Unfortunately, an initially sharp tip at the end of an cantilever, or attached to a quartz
sensor degrades when used for some time. If the tip is used under ambient conditions
it can be replaced straightforwardly by insertion of a new cantilever with a fresh tip.

When working in vacuum the quartz sensor (cf. Chap. 18) with a tip attached to
it is mounted in a sensor holder, which is large enough to be handled during the
transfer into the vacuum. The sensor holder (with a tip attached) is inserted into the
vacuum AFM using a wobble stick or another kind of manipulator. The easiest way
of inserting a sensor holder into an AFM in vacuum is if the receptacle at the AFM
includes a small magnet which guides the sensor holder (made of magnetic material)
to its desired position. Often a fork mechanism (or gripper mechanism) is used to
release the sensor holder from the manipulator when it is in position in the vacuum
AFM. Instead of magnetic forces also a spring mechanism can be used to fix a sensor
holder in the AFM. Additionally, to the mechanical fixing of the AFM quartz sensor
also two electrical contacts have to be provided for electrical excitation and detection
in the dynamic AFM modes.

4.7 Summary

• Coarse approach is the approach between the tip and sample from the macroscopic
range down to the range covered by the piezoelectric scanner. The coarse approach
can be performed by a stepper motor and fine thread screw.
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• Another type of coarse approach are inertial sliders. They are actuated by a saw-
tooth signal applied to the piezoelectric elements. During the slow slope part of the
signal, the slider moves together with the support, while during the steep slope part
of the signal the slider disengages from the support and does not move together
with the support due to its inertia. This leads to a relative motion between slider
and support in the micrometer range and below for every step.

• As AFM scanners tube piezo elements, piezo stacks, as well as flexure-guided
nanopositioning stages are used. The latter have the advantage that they can be
used in closed loop operation.

• In closed loop operation the non-linearity and hysteresis of piezo elements is
avoided by measuring the distance actually moved. Different kinds of position
sensors provide the required nanoscale position information.

• The designs of different AFM instruments use partially tube scanners and partly
flexure guided scanners with closed loop operation.

• AFMswith quartz sensors as alternative sensors to cantilever typeAFMsensors are
mostly used in vacuum environment and use piezo tubes as scanners and particular
designs for the coarse approach, such as the Pan SPM design or the KoalaDrive.
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Chapter 5
Electronics and Control for Atomic
Force Microscopy

We introduce the time domain and the frequency domain approaches to electronic
signals. Then we discuss some basic electronic components, such as voltage divider,
low-pass filter, and operational amplifier. We continue to discuss topics more closely
related to atomic force microscopy such as the feedback electronics, which in AFM
serves to stabilize the tip-sample distance. We close this chapter on electronics by
discussing how digital-to-analog converters and analog-to-digital converters work in
principle.

5.1 Time Domain and Frequency Domain

The usual representation of a time-dependent (electrical) signal is to analyze the
signal, e.g. voltage V as the function of time V (t), as it is appearing on the oscillo-
scope screen. However, sometimes it is also useful, or even more useful, to consider
the “frequency content” of a signal. A periodic signal can be represented as a sum of
sine signals of different frequencies having different amplitudes and phases (Fourier
series). This is termed: signal representation in the frequency domain.

If the signal is not periodic, the Fourier transform is used to represent the signal
in the frequency domain. The transform of a signal from the time domain V (t) to
the frequency domain V̂ (ω) is given by

V̂ (ω) =
∫ ∞

−∞
V (t)e−iωtdt, (5.1)

and correspondingly the transform from the frequency domain to the time domain is
given by the inverse Fourier transform as
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V (t) = 1

2π

∫ ∞

−∞
V̂ (ω)eiωtdω. (5.2)

In a more sloppy notation we will skip the hat for the frequency domain quantity and
write just V (ω).

5.2 Voltage Divider

One of the simplest electronic circuits is the voltage divider, which is shown in
Fig. 5.1a. Applying Kirchhoff’s law and Ohm’s law to this circuit results in the
following equations

Vin = V1 + V2 = I (R1 + R2) (Kirchhoff’s voltage law)

V2 = R2 I = Vout (Ohm’s law). (5.3)

These equations can be solved for

Vout

Vin
= G = R2

R1 + R2
. (5.4)

The output voltage divided by the input voltage is the called transfer function G.
We have assumed here that the output voltage is measured with an infinite inner
resistance, i.e. no current flows at the output. The limiting cases for the transfer
function are G ≈ 1 for R1 � R2 and G ≈ R2/R1 for R1 � R2.

Fig. 5.1 a Circuit scheme of
a voltage divider. The
transfer function is given by
G = Vout/Vin =
R2/(R1 + R2). b This circuit
is also a voltage divider,
however, now R2 is replaced
by a capacitor and an AC
input voltage is considered.
Thus, we use the complex
impedances ZR and ZC in
order to obtain the transfer
function

Vin Vout

R1

(a)

(b)

V1

V2
R2

Vin Vout

ZR

ZC~ ~
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5.3 Impedance, Transfer Function, and Bode Plot

In the previous section, we considered DC voltages and currents. In the AC case, the
voltages and currents can be written in the complex notation as

V = V0e
i(ωt+φV ), and I = I0e

i(ωt+φI ). (5.5)

Of course, for ohmic resistors Ohm’s law still reads as V = RI. For capacitances and
inductors the concept of resistance can be extended to a complex impedance, which
is defined as

ZC = 1
iωC for a capacity C, and

ZL = iωL for a inductance L , and of course
ZR = R for a resistor R.

(5.6)

For the impedances, the equivalent of Ohm’s law applies as V = ZI. For AC circuits,
including several impedances Z , the usual Kirchhoff laws apply, and the rules for
parallel and series resistors also hold for impedances, if the quantities are represented
in a complex form.

As an example, we consider the circuit shown in Fig. 5.1b, which is similar to
the voltage divider, except that one resistor is replaced by a capacitor and an AC
input voltage is applied. Thus, we consider the complex impedances ZR and ZC. The
transfer function (now dependent on the frequency) can be calculated in analogy to
(5.4) as

G(ω) = Vout

Vin
= ZC I

(ZR + ZC)I
=

1
iωC

R + 1
iωC

= 1

1 + iωRC
. (5.7)

For linear systems the output signal is a sinusoidal signal at the same frequency as
the sinusoidal input signal, however with modified amplitude and phase. Thus, the
transfer function (output signal divided by input signal) is a complex quantity with
amplitude and phase. In the Bode plot, the absolute value (modulus) of the complex
transfer function and the phase difference between output voltage and input voltage
are plotted, as shown in Fig. 5.2. The corresponding equations are

|G(ω)| = |Vout|
|Vin| = 1√

1 + ω2R2C2
, and φV = arctan(−ωRC). (5.8)

For frequencies lower than the corner frequency ωc = 1/(RC), the absolute value
of the transfer function approaches unity, i.e. gain |Vout| / |Vin| is one. For frequencies
much larger than ωc the absolute value of the transfer function decreases as 1/ω. At
the corner frequency, the gain has the value 1/

√
2 (which corresponds to −3dB). In

conclusion, the circuit shown in Fig. 5.1b is a low-pass filter, which transmits signals
up to the frequency ωc with gain one and suppresses signals with higher frequencies.
Another way to express this is that this circuit corresponds to a low-pass filter with
a bandwidth of ωc = 1/(RC).



90 5 Electronics and Control for Atomic Force Microscopy

10-2

10-1

100

A
m

pl
itu

de
ra

tio

10-2 10-1 100 101 102

-90º

-45º

0º
Ph

as
e

/ c

|G |(a)

(b)

Fig. 5.2 The Bode plot shows the absolute value of the complex transfer function also called gain
or amplitude ratio (a) and the phase shift of the output relative to the input signal (b). The figure
shows the Bode plot of the circuit in Fig. 5.1b. The behavior of the absolute value of the transfer
function (amplitude ratio) approaches the value one for frequencies lower than the corner frequency,
and decreases for higher frequencies, which is the characteristic of a low-pass filter

The phase behavior of this low-pass is shown in Fig. 5.2b. The phase shift is
zero for frequencies much lower than the corner frequency and approaches −90◦ for
frequencies much larger than the corner frequency.

The analysis of the low-pass circuit was one simple example, another one is if the
resistor and the capacitor in Fig. 5.1b are exchanged. This circuit corresponds to a
high-pass filter. Also more complicated circuits can be analyzed using Kirchhoff’s
laws or the rules for impedances in parallel or in series. One requirement for the type
of analysis described in this section is that the input signal Vin is a sinusoidal signal.
If the transfer function for all frequencies is known this characterizes the behavior
of the circuit at all frequencies. This is a basis to obtain the output signal for all
functions via Fourier methods.

5.4 Output Resistance/Input Resistance

In Fig. 5.3a we consider a device connected to a voltage source. Any kind of signal
source can be replaced by an ideal voltage source with an resistor in series, which
we call output resistance Routput, as shown in Fig. 5.3a. If the output of the signal
source is connected to the input of a device, this can change the output voltage Vout,
being no more identical to the ideal voltage source Vsignal. The voltage Vout depends
also on Rinput, the input resistance of the device connected to the source. The circuit
shown in Fig. 5.3a is (again) a voltage divider. Using (5.4) the output voltage Vout

can be written as
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Fig. 5.3 a Signal source, consisting of an ideal voltage source Vsignal and an output resistance
Routput, connected to a device with an input resistance, characterized by the resistance between
the input and the ground Rinput. b The output voltage for this circuit approaches Vsignal only if
Rinput � Routput

Vout = Vsignal
Rdevice

Rsignal + Rdevice
, (5.9)

and is shown in Fig. 5.3b. It can be seen that the output voltage approaches the signal
voltage if Rinput � Routput.

However, in relevant cases of small signal sources of sensors like photodiodes
(in the case of atomic force microscopy), the inner resistance of the signal Routput is
high. In such cases a impedance converter is used, which we discuss in Sect. 5.6.1
in order to convert the high output resistance of the signal source to a very low
output resistance at the output of the impedance converter, which can be connected
to devices with a modestly low input resistance, always maintaining the relation
Rinput � Routput.

The concept of output resistance and input resistance can be applied in sequence
when connecting electronic circuits one after another. We can assign to each device
in a sequence of devices an input resistance and an output resistance. In order to
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avoid the input of the next device modifying the output of the previous device, the
relation the relation Rinput � Routput should be always maintained.

Here we considered the DC, however, the concept of output and input resistances
can be extended to theAC case using the impedance replacing the resistance. Further-
more, this concept can also be used for active devices like circuits with operational
amplifiers, discussed in Sect. 5.6.

5.5 Noise

If we consider a DC electric signal with some time-dependent fluctuations such as
the current I (t) or the voltage V (t), it can be characterized by its average

〈V 〉 = lim
T→∞

1

T

T∫

0

V (t)dt. (5.10)

Fluctuations of the voltage around this average are called the noise as �V (t) =
V (t) − 〈V 〉. This is still a time-dependent quantity and its average is zero. If the
noise is due to random fluctuations, it is usually characterized by the following time
independent quantity

√〈
�V 2

〉 =

√√√√√ lim
T→∞

1

T

T∫

0

(V (t) − 〈V 〉)2dt . (5.11)

also called root mean square (RMS) noise.
The above considerations about the noisewere in the time domain, i.e. considering

the time-dependent signal V (t) and the time-dependent noise�V (t). Often it is more
convenient to consider the frequency components of a (noise) signal using the Fourier
transform of the time signal. This has the advantage that instead of the complicated
time dependence of a (noise) signal simple sinusoidal frequency components are
considered. If the (noise) signal is fed into a linear system, as for instance a low-
pass, the output frequency component is the input multiplied by the transfer function
G(ω). In the following,wewill consider the frequency dependence of a (noise) signal,
which is often named analysis in the frequency domain. The transition between the
time domain and the frequency domain is performed by the Fourier transform.

An important quantity describing a noise signal in the frequency domain is the
power spectral density (PSD). In a theoretical treatment the PSD is defined as the
Fourier transform of the auto-correlation function. A more practical equivalent defi-
nition defines the PSD as proportional to the absolute square of the Fourier transform
of the time signal �V (t) [1, 2].
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The single sided power spectral density (PSD) of the noise �V (t) (or generally
of a time-dependent signal) is

N 2
V( f ) = lim

T→∞
1

T

∣∣∣∣
∫ ∞

−∞
�V (t)e−2πi f tdt

∣∣∣∣
2

. (5.12)

An important property of the single sided power spectral density of the noise is that
it relates to the mean square noise as

〈
�V 2

〉 =
∞∫

0

N 2
V( f )d f = 1

2π

∞∫

0

N 2
V(ω)dω =

∞∫

0

N
′2
V (ω)dω, (5.13)

where N 2
V( f ) is the natural frequency PSD, while N

′2
V (ω) is the angular frequency

PSD. As measurements are usually performed using the natural frequency, we will
use f in the following.

If a detection scheme is used which measures the noise variable only within a
certain bandwidth B = f2 − f1 between f1 and f2, the band limited mean square
noise can be written as

〈
�V 2

〉
B

=
f2∫

f1

N 2
V( f )d f. (5.14)

The noise PSD indicates how much power the noise signal carries in a small region

around f . The spectral density of the noise is defined as NV =
√
N 2
V. If the noise

spectral density is constant between f1 and f2 (5.14) reduces to

〈
�V 2

〉
B

= ( f2 − f1)N
2
V( f ), (5.15)

and we obtain √〈
�V 2

〉
B = NV

√
B. (5.16)

The spectral density of the noise variable �V is expressed in the unit of the noise
variable per

√
Hz, for instance volt/

√
Hz. If the angular frequency is used the angular

frequency bandwidth Bω = ω2 − ω1 is in units of rad/s, not cycles/s. Correspond-
ingly, the unit of the noise spectral density NV(ω) is volt/

√
rad · Hz.

The power spectral density can be measured using a device named spectrum
analyzer. However nowadays, hardware spectrum analyzer instruments are less fre-
quently used in favor of analog to digital conversion of the measured signal followed
by a subsequent software discrete Fourier transform (DFT). As the PSD is propor-
tional to the absolute square of the Fourier transform a signal proportional to the PSD
is easily obtained. However, the correct calibration is no more “included” as it was
in the hardware spectrum analyzer. Since the discrete Fourier transform transforms
just n numbers to n new numbers, the user has to take care about the necessary
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calibration steps, and errors may occur in this calibration. While this is straight for-
ward in theory, it involves a number of non-trivial details. In the signal processing
from the time series of the signal to the spectral density several proportionality factors
are involved, for example: RMS amplitude or peak amplitude, two-sided spectrum
or single-sided spectrum, natural frequency PSD or angular frequency PSD, window
type, etc. So one has to consider all these factors carefully. Due to this non-trivial
proportionality factors, complementary also an experimental calibration of the power
spectral density is very desirable and will be considered in AppendixB.

5.6 Operational Amplifiers

Since operational amplifiers (op-amp) are the basic building blocks of analog elec-
tronics a brief introduction to their operation is given. An operational amplifier can
be considered as a “gain block” amplifying the difference between the input voltages
(ideally possessing very high gain). The voltage at the output is the amplified voltage
difference at the inputs. Outside of the gain block there is a feedback-loop network
(e.g. consisting of resistors), which controls the actual gain. Operational amplifiers
operated close to DC have typically the following properties:

• Very high input resistance, with a typical input current of a few pA,
• Very low output resistance, typically a few ohm,
• Very large open-loop voltage gain G (104–106).

We will show that if these properties of an operational amplifier are met the
characteristics of the amplifier are determined by the feedback-loop network only, not
the gain block itself. We are not concerned with the inner working of the operational
amplifier. A block diagram of an operational amplifier is shown in Fig. 5.4. The
output voltage is the difference of the input voltages multiplied by the open-loop
gain G as

Vout = G(V+ − V−). (5.17)

Due to the very high open-loop gains of operational amplifies, they are usually not
operated in an “open” configuration, because any voltage difference exceeding the
sub-millivolt range will saturate the output voltage which is limited to the supply
voltage Vs.

Fig. 5.4 Block diagram of
an operational amplifier
showing the supply voltages
Vs, the input voltages V± and
the output voltage Vout +

-V-
Vout

Vs+

Vs-

V+
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Fig. 5.5 Operational amplifier wired as a voltage follower. A negative feedback is realized by
connecting the output to the negative (inverting) input

5.6.1 Voltage Follower/Impedance Converter

If we connect the output of an operational amplifier to its negative (inverting) input
(Fig. 5.5) and apply a voltage signal to the non-inverting input, we will find that the
output voltage of the op-amp closely follows that input voltage.

In order to find an expression for Vout for the circuit in Fig. 5.5 we start from (5.17)
which states that the output voltage is the difference of the input voltages times the
open-loop gain. In our case the positive input voltage V+ is Vin and the negative
feedback voltage V− is due to the negative feedback Vout. Thus (5.17) reads

Vout = G(Vin − Vout), (5.18)

which leads to

Vout = Vin
G

1 + G
. (5.19)

For a large open-loop gain, the output voltage is approximately equal to the input
voltage Vout ∼ Vin.

Taking the output voltage of the operational amplifier and coupling it to the invert-
ing input is a technique known as negative feedback. In this circuit the operational
amplifier has the capacity to work in a linear mode, as opposed to merely being fully
saturated (due to the high gain) with no feedback for voltage differences exceeding
the mV range.

Here, as in the other operational amplifier circuits we will discuss, the actual
gain (which is one here) is not determined by the open-loop gain of the opera-
tional amplifier but by the outer feedback circuit (which is just a simple connection
between Vout and V−). It might be imagined that an amplifier with a gain of one
is useless. However, this circuit acts as an impedance converter, since a high input
resistance/impedance (being an intrinsic property of an op-amp) is converted to a
low output resistance/impedance (being another intrinsic properties of an op-amp).

While having “only” a voltage gain of one, the voltage follower has a power
(current) gain. The voltage follower is often used as “buffer” to interface a large
impedance output signal to device with a low impedance (input) load. The voltage
follower as impedance converter acts as interface device, drawing almost no current
from the source supplying its input (because of its high input resistance), and it can
supply a large amount of current to loads with low (input) impedance.
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Fig. 5.6 Operation principle
of non-inverting amplifier
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5.6.2 Voltage Amplifier

If we add a voltage divider to the feedback wiring (Fig. 5.6) only a fraction of the
output voltage is fed back to the inverting input. In this case the output voltage is a
multiple of the input voltage.

The gain of this circuit can be calculated taking the basic equation (5.17) into
account. If the output is connected to the inverting input, via a voltagedivider network,
V− can bewritten (usingOhm’s andKirchhoff’s laws1) as V− = Vout

R1
R1+R2

= VoutK ,
and Vin is connected to the positive input V+, then

Vout = G(Vin − KVout). (5.20)

Solving this equation for Vout/Vin, we find

Vout

Vin
= G

1 + KG
. (5.21)

If G is very large the gain becomes

Vout

Vin
= 1

K
= 1 + R2

R1
. (5.22)

We can change the voltage gain of this circuit just by adjusting the values of R1

and R2 (changing the ratio of output voltage which is fed back to the inverting input).
While we have used in the basic equation for the operational amplifier (5.17)

together with the analysis of the feedback circuit using Ohm’s and Kirchhoff’s laws,
the analysis of operational amplifier circuits can be simplified using two simple rules.
The rule that the input current of an operational amplifier vanishes we have already
used in our analysis. Due to the very high gain G, the difference between the inputs
V+ and V− approaches zero. This is a general rule, leading to the following two
“golden rules” which simplify the analysis of circuits with operational amplifiers.

• The input current to an operational amplifier vanishes (high input impedance).
• The difference between the inputs V+ and V− approaches zero.

1Vout = V1 + V2 = I (R1 + R2) = (V1/R1)(R1 + R2) = V− R1+R2
R1

.
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Fig. 5.7 Circuit of an
inverting amplifier realized
with an operational amplifier
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In the following we calculate the output voltage for the circuit shown in Fig. 5.7
using above “golden rules” for operational amplifiers. In this circuit a negative feed-
back is provided through a voltage divider, but the input voltage is applied to the
inverting input and the non-inverting input is grounded. The second “golden rule”
tells us that the voltage at the inverting input is zero. Thus, the inverting input is
referred to in this circuit as a virtual ground, being kept at ground potential (0V)
by the feedback, yet not directly connected to (electrically common with) ground.
Since the input current to the operational amplifier is zero (first “golden rule”), the
current through R1 and R2 are the same. By applying Ohm’s law to the two resistors
the gain can be calculated as

Vout

Vin
= −I R2

I R1
= − R2

R1
. (5.23)

Note that the output voltage always has the opposite polarity of the input voltage.
For this reason, this circuit is referred to as an inverting amplifier.

5.7 Current Amplifier

In AFM detection the current of a photo diode, corresponding to the deflection of a
cantilever is converted to a voltage by a current amplifier. Such amplifiers are also
called transimpedance amplifiers and already the circuit shown in Fig. 5.7 can serve
as such a current-to-voltage converter. If we consider the voltage source plus the
resistor R1 as a current source, a current of Iin = Vin/R1 flows to the virtual ground.
Since the input current of the operational amplifier is practically zero (high input
resistance), this current flows through the feedback resistor R2. In the actual current
amplifier shown in Fig. 5.8, the input current Iin has to flow through the resistor RFB.
Therefore, Iin = IFB = −Vout/RFB. Or

Vout = −IinRFB. (5.24)

The input current is converted to an output voltagewith RFB as proportionality fac-
tor. As an example: If the feedback resistor has a value of R = 1G�, one nanoampere
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Fig. 5.8 Circuit used as current amplifier, e.g for the current of a photo diode. The gain (actu-
ally transconductance in V/A) is proportional to the resistance of the feedback resistor RFB. The
bandwidth of this current amplifier is limited by the stray capacitance Cstray

of input current results in an output voltage of 1V. Due to the high input resistance
of an operational amplifier and its low output resistance, a high input impedance is
converted to a low impedance output which can be processed further.

Up to now we have considered the operational amplifier circuits as DC circuits.
In the following, we consider the AC performance of the current amplifier shown in
Fig. 5.8 and will show that its bandwidth is limited by the stray capacitance Cstray

parallel to the feedback resistor. We use the complex impedance to analyze this AC
circuit. The complex impedances for a resistor R and a capacity R are ZR = R, and
ZC = 1/(iωC), respectively. Since the two impedances in the feedback arm of the
operational amplifier are in parallel, the following expression results for the total
(complex) impedance Z as

1

Z
= 1

ZR
+ 1

ZC
= 1

R
+ iωC. (5.25)

The absolute value of the complex impedance results as

|Z | = R√
1 + (ωRC)2

. (5.26)

Replacing according to (5.24) Vout = −Z Iin, and identifying R with RFB, as well as
C = Cstray results in

Vout = −IinRFB√
1 + (

ωRFBCstray
)2 . (5.27)

This frequency dependence of the output voltage of the current amplifier is the same
as that of a simple passive low-pass with a resistor and a capacitor. The corner
frequency of such a low-pass at which the output voltage drops by 1/

√
2 is fcorner =

1/
(
2πRFBCstray

)
. As an example, if by careful design the stray capacitance can be

reduced to 0.1pF a bandwidth of 1.5kHz is obtained for a feedback resistance of
1G�. The bandwidth of the amplifier is the frequency range which is amplified
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Table 5.1 Gain, bandwidth
and noise for a current
amplifier with
RFB = 100M� and
RFB = 1G�

Cstray = 0.5pF RFB = 100M� RFB = 1G�

Gain 108 V/A 109 V/A

Bandwidth 3kHz 300Hz

Noise 0.3pA 0.1pA

without significant loss of the signal (i.e. from DC to fcorner ∼ 1/(2πRFBCstray). It
can be seen that the gain which is proportional to RFB and the bandwidth proportional
to 1/RFB are opposingfigures ofmerit. Increasing the amplificationmeans decreasing
the bandwidth and vice versa. Some numerical examples are given in Table5.1.

Another figure of merit for amplifiers is the noise. The (RMS) noise induced by
the thermal excitation of the electrons in a resistor R is called Johnson noise [3, 4]
and can be calculated as

Inoise =
√
4kBT B

RFB
. (5.28)

with B being the bandwidth of the measurement (fromDC to a maximum frequency)
and kB the Boltzmann constant. In Table5.1 some numerical values are given.

5.8 Feedback Controller

In atomic forcemicroscopy, a feedback controller is used to follow the surface topog-
raphy. Before we come to the application of a feedback controller to AFM, we will
consider feedback controllers in general. A general model for a feedback loop is
shown in Fig. 5.9. In the control loop, the system output x (measured constantly by
a sensor) is fed back to the input side, and compared to the setpoint w by subtraction
w − x = e. Depending on this error signal e, the controller determines a system input
(control signal) y, which is fed into the system in order to adjust the system output
x to the setpoint value w. This whole operation of the controller acts in a closed
feedback loop and fulfills the task of adapting the system output to the setpoint in the
presence of an external disturbing signal d. We consider the controller as well as the
system as linear systems. If the system is non linear, only so small deviations from
the working point are considered that the system response can be approximated as
linear.

Since the treatment of the feedback loop is often quite abstract and formal, we
will first consider a simple example: the heating system of a house in winter. The
simplest example of a feedback system is the on-off controller. On your thermostat
you set a certain desired temperature (setpoint) w. If the measured temperature x
is lower than w the controller gives a signal y to the system. For the case of the
heating system of a house, y is the heating power which is turned on from zero to
a certain power; thus the radiators heat the rooms until the set point temperature w
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Fig. 5.9 General model for a feedback loop with the set point w as input parameter, a controller
which has the error signal w − x as input, and the system with its output x , which is fed back to
the input and subtracted from the setpoint. The controller and the system can be described by their
transfer functions Gcontrol(ω) and Gsystem(ω), respectively. In the very simplest case the transfer
functions do not depend on the frequency and are simple proportionality constants Kcontrol, and
Ksystem, respectively

is reached. Due to the inertia of the system (i.e. the time delays) the temperature in
the rooms will continue to rise for some time after the heating has been switched off
(temperature overshoot), because the radiators are still warm. You can easily imagine
how this cycle continues. For instance, when the measured temperature x falls below
the setpoint temperature w it will take some time after the heating is started before
the radiators becomewarm. In conclusion, the actual temperature x fluctuates around
the desired temperature w. What controller theory is all about is to find a smart way
to keep x as close as possible to w.

In the formal language of control theory the controller, as well as the sys-
tem can be described by their transfer functions as function of the frequency.
G(ω) = output signal/input signal, as shown in Fig. 5.9. The transfer function can
be measured by applying a sinusoidal input signal of frequency ω and measuring the
amplitude and phase of the output signal (the sinusoidal signals are represented in
the complex notation, e.g. y = y0ei(ωt+φ). The transfer function G(ω) is a complex
function with amplitude and phase. The transfer function can be graphically repre-
sented by the Bode plot. The Bode plot for a low-pass as example was shown in
Fig. 5.2a.

In the following we calculate the transfer function of the closed-loop feedback
system from the (open-loop) transfer functions Gcontrol(ω) and Gsystem(ω). We make
use of the rule that the total transfer function of two systems is the product of the two
individual transfer functions. We start from the output of the feedback loop x and
work backwards: The output signal of the loop x is equal to the input of the system
y times the system transfer function Gsystem(ω). The input of the system y is also
the output of the controller and thus y = (w − x)Gcontrol(ω). Thus, repeating these
steps in equations, the closed-loop system output can be written as

x = y Gsystem(ω)

= (w − x)Gcontrol(ω)Gsystem(ω).
(5.29)
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As the closed-loop transfer function T is output x divided by inputw, the closed-loop
transfer function can be obtained from (5.29) as

T (ω) = x

w
= Gcontrol Gsystem

1 + Gcontrol Gsystem
. (5.30)

It should be mentioned that this transfer function is the steady-state transfer function,
after initial transients due to the initial conditions have decayed. If the initial transients
should be considered, numerical simulations can be used, or advanced concepts of
control theory like the complex frequency and the Laplace transform have to be used,
which are beyond the scope of the current treatment [5, 6].

We consider in the following the very simple case that the system can be
described by a frequency independent constant transfer function Ksystem, such that
y = x Ksystem. One of the simplest controllers is the proportional controller which is
described by another frequency independent constant Gcontrol = Kcontrol = KP and
will be discussed in the following.

5.8.1 Proportional Controller

If in the example of the heating system of a house, a heater with a continuously
variable heating power is available (not just on or off), a proportional controller
(P controller) can be realized. For the P controller the output of the controller y is
proportional to the error signal w − x(t), as

y(t) = KP(w − x(t)). (5.31)

The proportional constant KP is called proportional gain. Since the heating power is
nowproportional to the error signal it is obvious that the temperature can be controlled
much better with much less overshoot than for the on-off controller. (Actually, the
on-off controller is a P controller with infinite gain KP, in which the heating power
is limited by the maximum heating power of the heater.) Since the output of the
controller is (ideally) instantaneously proportional to the error signal, the P controller
is a fast reacting type of controller.

In the frequency domain the P controller has a very simple constant transfer
function G(ω) = KP. Thus, the Bode plot of the transfer function as function of the
frequency has the constant value KP for the gain and a frequency independent phase
of 0◦.

One problem with the proportional controller is that a pure proportional control
will not settle at the setpoint value w, but will retain a steady-state error, which
depends on the proportional gain. This can be qualitatively understood as follows. If
in the example of our heating system we have continuous losses of heat (in winter it
is outside cooler than inside), therefore, we need a non-zero heating power in order
to maintain the setpoint temperature, even if the error signal is zero. However, the
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pure proportional controller does not provide this. According to (5.31) the control
signal y is zero for zero error signal w − x . In the reverse conclusion this means that
the pure proportional controller cannot reach the setpoint w. The higher the external
disturbance (i.e. the cooler it is outside) the greater is the deviation from the setpoint
value. Increasing the proportional gain can reduce the deviation but it never goes to
zero and high gain can lead to instabilities (oscillations) in the feedback loop.

In the following we derive an expression for the steady-state error of a P controller
(Kcontrol = KP) and a system characterized by a constant transfer function Ksystem.
We include also a disturbance signal d acting on the system, as shown in Fig. 5.9,
which contributes to the output signal of the system as Ksystem d. The steady state
error can be written as

esteady = w − x
= w − (Ksystem y + Ksystem d)

= w − KsystemKP esteady − Ksystem d.

(5.32)

This equation can be solved for esteady, resulting in

esteady = 1

1 + KsystemKP

(
w − Ksystem d

)
. (5.33)

The system transfer function Ksystem is system immanent, however, the controller
transfer factor KP can be increased in order to minimize the steady-state error esteady.
However, as we will see later, a high proportional gain can lead to an instability of the
feedback loop. Therefore, there are limits for the increase of the proportional gain.
Equation (5.33) also shows that a disturbance signal d acting on the system is equiv-
alent to a change of the setpoint w. Therefore, we will mimic below a disturbance
signal by changing the setpoint, which can be realized easier. Here we discussed
the steady-state behavior of the feedback system, while the initial transient, i.e. the
behavior of the systemwhen it approaches towards the steady-state will be discussed
below.

In summary the advantage of the P-controller its fast reaction time, the controller
output is instantaneously directly proportional to the error signal. The disadvantage
of the P controller is the steady-state deviation of the system output from the desired
setpoint value.

5.8.2 Integral Controller

The integral controller provides a control signal proportional to the accumulated
deviations from the setpoint. The contribution from the integral term is proportional
to both the magnitude of the error and the duration of the error. Summing the instan-
taneous error over time (integrating the error) corresponds to an accumulated effect
that should have been corrected previously. For the I controller the output of the
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controller y is written as

y(t) = KI

t∫

0

(w − x(τ ))dτ . (5.34)

The proportional constant KI is called integral gain. The integral controller elim-
inates the residual steady-state error that occurs with a proportional controller. A
disadvantage of this type of controller is the slower reaction to changes of the input
signal, due to the integration. For small times the value of the integral is small. Of
course also the I controller can be made faster (shorter reaction time) by increas-
ing KI, however, this also increases the tendency towards unstable and oscillating
behavior. In a variant of the I controller, the integration is not performed from zero,
but over a time interval �t prior to the current time.

Let us now discuss the steady-state behavior of the I controller. We assume a
step in the setpoint (or alternatively a step in the disturbing signal). If, after an initial
transient, the I controller has adjusted the output signal such that themomentary error
signal vanishes, i.e.w − x = 0, this vanishing error signal will be kept in the steady-
state. If the error signal vanishes, no new contribution adds to the integral and the
controller output signal y corresponding to the vanishing error signal is maintained
constant in the steady-state.

In order to derive the transfer function of the I controller in the frequency domain,
we start from the expression (5.34) for the output signal of the I controller and insert
an oscillatory (complex) input signal as input signal e(τ ) of the I controller. This
results in

y = KI

t∫
0
e(τ )dτ

= KI

t∫
0
e0ei(ωτ+φ)dτ

= KI
iω e(t).

(5.35)

The transfer function in the frequency domain results as

G(ω) = y

e
= −i KI

ω
. (5.36)

The Bode plot resulting from this transfer function leads to an amplitude ratio (gain)
of |G| = KI/ω and a constant phase of −90◦ (c.f. Fig. 5.11). The high gain at low
frequencies, proportional to 1/ω, leads to a small error signal of the closed feedback
loop for low frequencies, which we have seen before as the vanishing steady state
error. However, the gain decreases at high frequencies due to the 1/ω behavior and
thus high frequency deviations from the setpoint cannot efficiently compensated by
the I controller.
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In summary the advantage of the I controller the vanishing the error signal in the
steady-state. The disadvantage of the I controller is the its slower reaction time due
to the integration of the error signal.

5.8.3 Proportional-Integral Controller

In a PI controller the P and the I control signals are added up, as shown in Fig. 5.10.
In this controller, the advantages of both the P and I controllers are combined, while
avoiding their individual disadvantages. Short-term deviations from the setpoint are
compensated fast by the proportional controller and long-term deviations are com-
pensated by the integral controller. This type of controller can regulate the error
signal to zero in steady-state. The output signal can be written as

y(t) = KP(w − x(t)) + KI

t∫

0

(w − x(τ ))dτ . (5.37)

Often also a differential controller is added resulting in total in a PID controller.
However in atomic force microscopy the noise is usually so large that a D controller
(which is particularly prone to noise) is not used and the PI controller is standard in
AFM.

The transfer function of the PI controller in the frequency domain is obtained by
adding the transfer functions of the P controller and the I controller. This is the case,
as the P controller and the I controller are connected in parallel and add up, as shown
in Fig. 5.11. Thus, the transfer function of the PI controller results as

G(ω) = KP + KI

iω
, (5.38)

System
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(w-x( ))dKI
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Fig. 5.10 Schematic of a PI controller in which the control signals of the P controller and the I
controller are added
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Fig. 5.11 Bode plot of a PI
controller. At low
frequencies the I controller
part is dominant, resulting
for instance in a vanishing
steady state error. At high
frequencies the P controller
is dominant controlling small
high frequency deviations
from the setpoint. The
transition between the P and
the I behavior occurs at the
cross-over frequency ωc. The
behavior of a pure P and a
pure I controller is indicated
as dotted and dashed lines,
respectively

101

102

10-2 10-1 100 101

0

-45°

-90°

I IG

c

P controller

Ph
as

e
G

ai
n

P controller

I controller

Frequency (Hz)

I controller

PI controller

PI controller

and the corresponding amplitude ratio (gain) and phase result as

|G(ω)| =
√
K 2

P + K 2
I

ω2
, and φ = arctan

(
Im(G)

Re(G)

)
= arctan

(−KI

KPω

)
. (5.39)

Using these equations, the Bode plot for the parameters KP = 10 and KI = 2 is
shown in Fig. 5.11. The Bode plot of the PI controller follows for low frequencies
the behavior of the I controller, with a 1/ω gain and a phase of −90◦. At large
frequencies the behavior of the PI controller converges towards that of a P controller,
i.e. constant gain and a phase of 0◦. The transition between both regimes occurs at
the corner frequency ωc = KI/KP, as indicated in Fig. 5.11.

In case that the constant gain at high frequencies is undesirable, a low-pass filter
with the transfer function shown in (5.7) and Fig. 5.2 can be added after the PI
controller in order to damp the high frequency response. In this case the respective
transfer functions multiply.

5.8.4 Time Discrete Implementation of a PI Controller

Up to now we have considered a continuous system output signal and a continuously
acting controller. However, nowadays large parts of the feedback loop are imple-
mented digital. The system output is sampled digital and the controller is imple-
mented digital as well. The sampling occurs periodically with a sampling time tsample

and also the controller output signal is calculated with the corresponding frequency.
This time discrete implementation of the controller corresponds to an additional part
of the controller with a corresponding transfer function, which has to be multiplied
with the transfer function of e.g. thePI controller. The transfer function corresponding
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to the time discrete implementation maintains the amplitude of the signal (this is not
changed by the sampling), while it results in a phase shift of the signal due to the sam-
pling, as shown in the following. If the output signal of the controller y is calculated
from the error signal in one time step, this corresponds to a time delay of the output
signal of tsample relative to the input signal. This time delay corresponds according to
(2.7) to a phase shift of φ(ω) = −ωtsample. This phase shift can be neglected for low
frequencies ω � 2π/tsample. The phase shift (absolute value) increases linearly with
the frequency ω and becomes sizable at high frequencies approaching 1/tsample. If
the phase shift becomes 180◦ the sign of the signal inverts and the negative feedback
will turn into a positive feedback and this can lead to an instability of the feedback
loop. In order to prevent this, signals of this frequency have to be suppressed, e.g.
by a low-pass added to the controller.

The pseudocode of a time discrete implementation of a PI controller is given in
the following.

start
read measured_signal
error_signal = set_point - measured_signal
integral = integral + error_signal * dt
controller_output = K_P * error_signal + K_I * integral
goto start

Such a digital algorithm of the feedback controller can be used to analyze the
behavior of a controller with a spreadsheet. One way to analyze the performance of
controllers is analyze their step response. Step response means that the setpoint w

(or alternatively the disturbing signal) is changed instantaneously from e.g. zero to
one and the reaction of the controller and the whole system to reach the new setpoint
is monitored.

As a first example, we use the simplest controller, a P controller characterized
by its gain KP and the simplest possible system characterized by a proportional
gain Ksystem = 1. Additionally, we include a low-pass to the system with a time
constant of 20 × tsample. The step response of this simple feedback system is shown
in Fig. 5.12a for two different values of KP. The steady state error can be clearly seen
and corresponds to the steady state error calculated from (5.33). With increasing
gain KP the steady state error becomes smaller and the time to reach the steady
state becomes shorter. However, beyond a certain maximum value of the gain KP the
feedback loop becomes unstable, i.e. monotonously increasing oscillations result.

The behavior of an I controller in the time discrete case is shown in Fig. 5.12b for
two different values of the gain KI and a system consisting again of a proportional
gain of one and a low-pass behavior. It can be seen that for an I controller the set point
value is reached in the steady state. Furthermore, for larger values of the integrator
constant KI a faster reaction of the controller is observed. Figure5.12c shows the
step response of a time discrete PI controller for two different sets of KP and KI.
In the PI controller the advantages of both types of controller are combined: The
setpoint is reached and the response time is reasonably fast.
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Fig. 5.12 a Step response of
a P controller and a system
with a proportional gain of
unity and a low-pass
behavior of 20 × tsample. The
setpoint signal with a step at
time t = 0 is shown in black
and the resulting system
output signal x(t) induced by
the controller in blue and
red. Due to the steady state
error inherent to the P
controller, the system output
does not reach the setpoint
value of one, but remains at a
lower value. The steady state
error calculated from (5.33)
corresponds to the values
shown in the graph. b Step
response of an I controller
for two different constants of
KI. An overshooting of the
system output signal is
observed in both cases and
the speed of the controller
increases for the higher value
of KI. c Step response of a PI
controller for two different
sets of constants. The PI
controller combines the
advantages of the P and the I
controller: vanishing steady
state error and fast response
time. Note that the time
scales in a–c are different
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5.8.5 Instabilities of a Feedback Loop

A feedback system is considered as stable if a bounded input signal results into a
bounded output signal for all times. A statement about the stability of the closed-loop
feedback system can be obtained from the Bode plot of the open-loop system, i.e. the
feedback path in Fig. 5.9 is not closed. The Bode stability criterion can be formulated
as follows [7]:

A closed-loop system is stable if the corresponding open-loop system is stable and the
frequency response of the open-loop transfer function (Bode plot) has an amplitude
ratio of less than unity at all frequencies corresponding to φ = −180◦ − n · 360◦, where
n = 0, 1, 2, . . . ,∞.
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Fig. 5.13 Open loop transfer function of a feedback system. The corresponding closed loop system
is stable if the gain remains smaller than one at the phase crossover frequency ω

phase
c

Since this criterion is a bit hard to understand we explain it in the following for
some examples. In many cases and the ones we consider in the following only the
n = 0 case is relevant. The Bode plot of an open loop system consists of two graphs
(a) gain or amplitude ratio and (b) phase as function of the frequency for a sinusoidal
input signal. We discuss first the Bode plot shown as solid lines in Fig. 5.13 (with
a hypothetical monotonously decreasing frequency behavior). The phase crossover
frequency ω

phase
c is defined as the frequency at which the phase has the value of

−180◦. If the gain of the open loop system at this frequency is smaller than one,
as it is the case for the transfer function shown as solid line in Fig. 5.13, the closed
loop system is stable. Moreover, the gain margin describes how much the gain of the
open-loop transfer function can be increased before the system becomes unstable,
as indicated by the dashed line in Fig. 5.13. The gain crossover frequency ω

gain
c is

defined as the frequency at which the gain has the value of one. The phase margin
(usually defined as positive value) is how much the phase has to be decreased to
become −180◦, as shown in Fig. 5.13. This gain and phase margins indicate how far
the feedback loop is from the transition to an unstable behavior.

An example for an unstable closed loop feedback system is shown as dashed
curve in Fig. 5.13. In this example the gain curve is shifted up to higher gains, while
it is assumed that the phase behavior remains the same (solid line phase curve). In
this case the open loop transfer function has a gain of one at the phase crossover
frequency ω

phase
c and the closed loop feedback system will be unstable according to

the above Bode stability criterion. Strictly speaking the above Bode stability criterion
is a sufficient criterion, but not a necessary condition for stability [7].
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5.8.6 Measurement of Transfer Functions

We have seen that transfer functions, complementary to the analysis of a step
response, are important to characterize a feedback system. The transfer function
of the controller e.g. a PI controller can be calculated as (5.38). For the transfer
function of the system simple models can be used as we have done it before, e.g.
a P system with a low-pass. However, more realistically the transfer function of an
AFM can be much more complicated than the one of a simple model system.

The open loop transfer function of a system can be measured as follows. First
the feedback system is brought to operation at a desired working point. For the
case of an AFM this means that the tip is engaged to the sample and the sensor
signal (e.g. the oscillation amplitude) has reached its desired setpoint value. Then
the controller is stopped at this working point and a sinusoidal modulation signal
with a certain frequency Vin(ω) is applied (added) to the input of the system, as
shown in Fig. 5.14. If the system is linear (as we assume throughout this treatment)
the resulting output signal Vout(ω) of the system is also a sinusoidal oscillation at the
frequency ω, however, with a different amplitude and phase as the input signal. The
output signal of the system is measured and analyzed with respect to its amplitude
(gain) and phase. The resulting amplitude ratio Vout(ω)/Vin(ω) and the phase of the
output signal relative to the input signal correspond to two points of the Bode plot at
the frequencyω. After the values of theBode plot have been obtained at one particular
frequency, the feedback is enabled again in order to compensate for a drift from the
desiredworking point. In anAFM system, tip and samplemay have drifted to another
position and the system output may be somewhat different from the setpoint value.
After the setpoint value is restored by the feedback, a new measurement at a slightly
higher frequency of Vin(ω) is performed. In this way the Bode plot and thus the
transfer function of the system can be measured in a desired frequency range.

The controller can be also included into the system. In this case the modulation
voltage V

′
in(ω) is applied to the input of the controller (e.g. as a modulation of the

setpoint value as shown in Fig. 5.14). This corresponds to the measurement of the
open loop transfer function of the feedback system, if the system output signal x is
not fed back to the input of the controller.

w
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w-x
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ΣΣ
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Fig. 5.14 Scheme of themeasurement of transfer functions. The open loop system transfer function
ismeasured bymodulation of the system input signalwith the controller halted. The transfer function
of the closed loop feedback system is measured by modulating the set point
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When measuring system transfer functions, it should be noted that a system trans-
fer function might not be constant as function of time and various outer conditions.
Different kinds of system variations can happen. For instance for the case of an AFM
the system transfer function can change if the tip form changes (tip switch), or the
transfer function close to a step edge can be different from the one on a free terrace, or
the transfer function on different materials can be different. However, other parts of
the system transfer function like the transfer function of the high voltage amplifiers
driving the piezo elements, or the amplifier measuring the signal amplitude will stay
constant.

The transfer function of the closed loop feedback system can be measured by
modulation of the setpoint value with a sinusoidal signal V

′
in(ω), while the controller

is in operation and the feedback loop is closed (Fig. 5.14). The Bode plot is obtained
by analyzing amplitude and phase of the output signal Vout(ω) relative to the input
signal V

′
in(ω).

5.9 Feedback Controller in AFM

Up to now we have discussed feedback controllers from a very general perspective.
Now we will apply these concepts to the case of an AFM system. In AFM the
elements in the above-mentioned feedback loop have the following correspondence
(Fig. 5.15).

• The setpoint w corresponds to a voltage representing the desired AFM sensor
signal x , e.g. deflection, amplitude, or frequency shift.

• The (digital) controller calculates the error signal and determines the system input
(control variable) y, which is in AFM the z-voltage controlling the tip-sample
distance using the z-piezo element.

• The most complex part of the feedback loop is the system itself. In the case of
AFM, it consists of DA converters, converting the digital value of the control
variable y to an analog voltage, the high-voltage amplifiers (HVA) for the z-piezo
voltage, the z-piezo element for the vertical positioning of the sample (or tip),
and the tip-sample interaction, as well as the measurement of the AFM sensor
signal, which depends on the AFM detection mode. In the static mode it is the
cantilever deflection, in the dynamic AMmode it can be the oscillation amplitude,
or in the FM mode the frequency shift of the sensor resonance frequency. Any of
these signals is converted to a corresponding voltage by an amplifier. This voltage
is called the AFM sensor signal. Finally, the sensor signal is converted by AD
converters and corresponds to the system output x which is fed to the controller.

• Various kinds of noise arise due to external mechanical vibrations, the noise of the
amplifiers, the sensor thermal noise, and the noise of DA and AD converters.

• Also the topography of the sample corresponds to a disturbance changing the
tip-sample distance and thus the sensor signal.
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Fig. 5.15 Model of an AFM feedback loop with a digital (time discrete) PI controller and the
system consisting of a digital to analog converter (DAC), a high voltage amplifier (HVA), z-piezo
elements, the tip-sample system, detection of the sensor signal and a analog to digital converter
(ADC)

In AFM the surface topography corresponds to a disturbance of the system and the
controller compensates for this disturbance. A step in the topography of the sample
can be emulated in the control system by a step-like change of the setpoint value for
the sensor voltage (step response). Since the disturbance due to the topography can
have quite high values (several steps, scanning slope), this leads according to (5.33)
to a large steady state error if only a P controller would be used. Due to this, in AFM
the I controller is the most important controller, as this controller leads not to a steady
state error, even for large values of the topography signal. The I controller provides
a constant output in response to a vanishing error signal (no further contributions to
the integral due to vanishing integrand). This is useful to maintain a new height level
past a step edge in the topography.

In AFM, the P-part of the controller regulates fast deviations from the setpoint
such as small/atomic corrugations. Moreover, the I-controller has the advantage that
it is less prone to noise. Depending on the conditions, the measured sensor signal
can be quite noisy. While the P-controller reacts immediately to a noise spike of the
measured signal, an I controller acts as a low-pass averaging out noise spikes.

A differential controller is rarely used in AFM, as this type of controller is most
prone to noise and the implementation of another controller adds a further dimension
in the space of control parameters to be optimized.

The gain constants of the PI controller are optimized in AFMoperation as follows.
Starting from an initial working point with default (conservative) gains and with the
sample approached to the tip, the integrator gain KI is increased until, ringing (slight
oscillations) of the controller output signal z is observed. Then KI is decreased until
the controller output signal becomes stable again. Then the proportional gain KP is
increased until ringing occurs and decreased until a stable condition is reached. This
procedure can be repeated in order to do fine tuning of the parameters. Subsequently,
scan is started and the parameters can be further optimized according to the obtained
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Fig. 5.16 Schematic
(exaggerated) step response
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to a modulation of the
setpoint with a square wave.
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image. For instance a sharp feature in the topography should be imaged as a sharp
feature without ringing.

Alternatively to real scanning of a surface topography, the setpoint signal w can
be changed in order to emulate a topography signal and observe the reaction of the
controller to this signal. Modulating the setpoint with a square signal corresponds
to the analysis of the step response of the feedback system. In Fig. 5.16 the setpoint
changes from zero to one at time = 50 and back to zero at time = 250. The reaction
of the AFM feedback signal y or z to this is shown schematically (exaggerated) for
too slow feedback settings (black line), too fast feedback settings (red line), and
appropriate feedback settings (blue line). A scan in the reverse direction will show
the opposite signatures. If the feedback parameters are not optimized this can lead to
artifacts in the acquired images. If the feedback is too slow this will lead to blurred
images; if the feedback is too fast this may lead to a feedback overshoot when the
tip encounters sudden height changes in the topography of the sample, as discussed
also in Chap.8.

In AFM, there is an effect which exerts a high load to the feedback controller.
Usually the sample is not oriented perfectly parallel to the xy-directions given by the
piezoelectric scanner. This slope (scanning slope) is usually the largest height signal
in the original AFM data and will be removed by appropriate background subtraction
in the final image, as discussed in Chap.7. However, the feedback has to follow this
(scanning) slope. As a quantitative example, if the xy-plane of the scanner and the
sample surface are 3◦ off relative to the sample surface, this slope corresponds to a
height of 500Å for a 1µm wide scan. This is usually by far the largest topography
height signal in an image. Also here the I controller can follow a constant slope
better than the P controller. In principle another controller type can be added which
particularly compensates for this slope disturbance signal [8]. However, since this
adds another parameter and makes thus the parameter tuning of the controller more
difficult, this is rarely done. Another way to cope with the scanning slope is to set
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the system input (voltage to the z-piezo) already to the value it had at this position in
the previous scan line. In this case the PI controller has only to compensate for the
changes in the topography relative to the previous scan line. As the scanning slope
usually remains constant from scan line to scan line this puts less load to compensate
for on the PI controller.

5.10 Implementation of an AFM Feedback Controller

Feedback controllers are realized via a digital feedback loop nowadays. The sensor
signal is measured by an amplifier and then the corresponding voltage is digitized
by analog-to-digital converters (ADC), as shown in Fig. 5.17. These converters can
have, for instance, an accuracy of 20bit in a range of ±10V corresponding to a step
width of 20µV, which is usually far below the noise in the system and therefore
sufficient for all practical purposes.

The actual feedback loop is often realized by a digital signal processor (DSP) or
with field programmable gate arrays (FPGA) (Fig. 5.17). ADSP is a own computer on
which a single user single-task real-time program runs. From themeasured (digitized)
sensor signal and the sensor signal setpoint, the output, i.e. the actuator voltage
for the z-piezo motion, is calculated using a digitized version of a PI controller.
Using a digital feedback loop has several advantages. First, it is very easy to stop
the feedback and to perform spectroscopic measurements, and also to measure the
transfer function. Another advantage is that the feedback mode can be changed just
by changing the software. The controller algorithm can be changed by a few lines

DACsADC DSP
X ZY Cantilever

oscillation

HV
amplifier

AFM

Sensor
amplifier

Data
Commands

Fig. 5.17 Implementation of computer controlled AFM electronics
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in the DSP program. Furthermore, non-linear algorithms for noise reduction can be
implemented.

Once the controller output (new z-voltage) is calculated, this number is converted
into an actual voltage by (for instance) 20 bit digital analog converters (DAC). This
z-voltage (range: ±10V) is then amplified by a high-voltage amplifier to a range of
e.g.±200V (Fig. 5.17). This is enough to reach the necessary amplitude of the piezo
actuators of a few micrometers. Regarding the resolution, the following reasoning
can be applied: For a piezo constant of 60Å/V and a high-voltage amplifier gain
of 20 one DAC unit converts to a z-distance of 2pm, which is usually more than
enough. If a higher resolution is required, the gain of the high-voltage amplifier can
be reduced. This means that with the high resolution DA andAD converters available
today the digitization of the input and output quantities is no longer a problem since
it is far below the usual noise limits. For the dynamic AFMmodes also the oscillation
voltage can be supplied from the computer via a DAC to piezo driving the oscillation
of the sensor.

When scanning an AFM image, the DSP sends the xy-scan data to the DAC.
The voltages for the x- and y-electrodes are finally amplified by the high-voltage
amplifiers. The data about the height of the tip above the surface, i.e. the voltage
applied to the z-piezo, generated by the feedback algorithm running on the DSP, is
sent to the PC. The measurement program takes the height of the AFM tip above the
surface and displays it as an image, i.e. in gray scale as a function of x and y.

Yes No

Retract the tip fully using
fine motion, i.e. z-piezo voltage

and disable feedback

Check if tip can reach the surface by
extending the z-piezo (reducing the tip-

sample distance) and contineously
monitoring the sensor signal.

Does the signal reach the setpoint?

Retract the tip

Enable feedback

Make a single coarse
approach step

Retract the tip

Fig. 5.18 Flow chart of the automatic approach procedure used in atomic force microscopy
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The digital control of the AFM also allows an automated procedure to be used
during the coarse approach of the tip towards the sample. This procedure consists
of alternating steps of fine z-approach and a subsequent coarse approach step, if a
tip-sample contact is not reached within the z-fine position range. In this procedure
the coarse positioning step has to be (for safety) smaller than the z-fine positioning
range. A flow chart for an automated control could be as shown in (Fig. 5.18). After
the automatic coarse approach a desired setpoint for the sensor signal is chosen and
scanning can be started.

5.11 Digital-to-Analog Converter

In a computer controlled data acquisition and control system, analog data have to
be read to the computer and digital data generated by the computer have to be
converted to analog signals. For instance, in atomic force microscopy the xy-scan
signals are generated by a computer program (digital values) and have to be converted
to analog signal driving the piezo elements. For this task a digital-to-analog converter
(DAC) is used. Here we describe the principle of how such a device can operate.
However, actual digital-to-analog converters are more sophisticated than the basic
idea explained here.

We assume that the digital signal is already present as voltages (high/low) at
several wires of a connector. As an example, we will consider a four-bit signal in
the following. In Fig. 5.19, the digital signal is represented by switches either open
or closed (−5V). Each of the lines (switches) has a different weight from 20 to
23 corresponding to the weight of the bit in the binary digital code. If all switches
are open this corresponds to zero (0000), if all wires are connected to −5V this

R/4R/8 R/2 R = 5 k
I  = 1 mA1I  = 2 mA2I  = 4 mA3I  = 8 mA4

-5V

1 0

2
3

2
02

12
2

+

- Uout

RFB

U0

1 0 1 0 1 0

Fig. 5.19 Operating principle of a digital-to-analog converter
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corresponds to (binary 1111, i.e. 15). The task is now to convert the digitally coded
voltage values present at the four connectors to 16 analog voltages relative to ground,
ranging, for example, from 0 to 10V. The resistor following each switch is chosen
such that the current through it (when flowing to ground) corresponds to theweight of
that bit. The least significant bit (20) has, for instance, a 5k� resistor, corresponding
to a current of 1mA to ground, while the most significant bit (23) has an 8 times
smaller resistor corresponding to an 8 times higher current of 8mA in this line.
All the lines are routed to the inverting input of an operational amplifier acting as
a transimpedance amplifier. Since the positive input of the operational amplifier is
on ground, the negative input is the virtual ground, as we have considered before.
At the point where all these lines are brought together the sum of all the currents
flows through RFB. According to (5.24), the analog output voltage at the operational
amplifier is

Uout = −RFBU0

∑
i=all closed switches

1

Ri
. (5.40)

The maximum output voltage can be chosen using a proper value for RFB.

5.12 Analog-to-Digital Converter

In atomic force microscopy, the analog voltage corresponding to the sensor signal
has to be converted to a number (e.g. 16-bit value) proportional to the analog voltage
(sensor signal). For this task, an analog-to-digital converter (ADC) is used. An ADC
can be realized by the comparison of the analog signal (to be digitized) to a voltage
from a digitally generated voltage ramp. The principle of operation of one simple
ADC is shown in Fig. 5.20. A digital voltage ramp is generated and converted to
an analog voltage ramp using a DAC. The value of the generated voltage ramp
is compared to the analog input signal to be digitized using a comparator. This
comparator has a low digital signal as long as the voltage ramp has a lower voltage
than the input voltage. A comparator can be realized by an operational amplifier
without external feedback network. Due to its large open-loop gain the output will
always be maximally positive as long as the negative input voltage is smaller than the
voltage at the positive input. The comparator signal changes to logically high if the
voltage ramp exceeds the voltage to be measured (Fig. 5.20). This end of conversion
signal is then fed to the ramp controller in order to stop the ramp and to read the
actual (digital) ramp value. With this digital value of the ramp, a digital value of the
analog input signal is saved and the conversion is stopped. Instead of ramping up
all digital values from zero, also some interval-based algorithm can be also used in
order to find the value closest to the analog input.
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Fig. 5.20 Operating principle of an analog-to-digital converter

5.13 High-Voltage Amplifier

High-voltage amplifiers are needed to drive the piezo elements since the voltages
supplied by the digital-to-analog converters are usually only in the range up to±10V
and are not high enough to generate sufficient extensions of the piezo elements of
several micrometers. Therefore, the DAC voltages are amplified up to about 200V,
which generates the required piezo extensions. We assume here again piezo tubes
as piezo elements. Much higher voltages are not advisable because they can lead
to a depolarization of the piezo material. A reasonable upper limit for the required
bandwidth of the high-voltage amplifiers is the resonance frequency of the piezo
element. You cannot move a piezo element at a frequency higher than its resonance
frequency. Therefore, 50kHz is an upper limit for the required bandwidth. In practice,
theAFM feedback loop often has amuch lower bandwidth in the range between 1 and
10kHz. In this case, a low-pass filter at the output of the high-voltage amplifier can
be used to reduce the noise. The output noise of the high-voltage amplifiers should
be less than 1mV. With a typical z-piezo constant of about 50Å/V, this corresponds
to a noise in the extension of the piezo in the z-direction of 0.05Å, i.e. 5pm.

The piezo motions during scanning are relatively slow. In order to move inertial
sliders (Sect. 4.1.1), saw-tooth signals are applied to the piezo elements and the
steepest possible slope of the piezo motion is required. This means a high slew rate
(voltage change per time) of the high-voltage amplifier is required. The achievable
slew rate depends on the capacitive load at the output of the amplifier, i.e. the capacity
of the piezo elements. A high piezo capacity means that a lot of charge has to be
pumped to or from the piezo element. If this has to be done in a short time, a high
current has to flow. Therefore, high-voltage amplifiers driving piezo elements with a
high capacity have to supply a high current in order to achieve a high slew rate. This
can lead to problems of high power dissipation in the leads. This problem with the
high capacitance occurs mostly for monolithic stacks of piezo elements. They have
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capacitances in the μF range, while piezo tubes, for instance, have only capacitances
in the nF range.

5.14 Summary

• Operational amplifiers are characterized by a very large input resistance, a very
low output resistance and a very large open-loop gain.

• The actual gain of an operational amplifier including a feedback network is deter-
mined by the characteristics of the feedback network, not by the operational ampli-
fier.

• Two golden rules can be applied when analyzing an op-amp circuit: (i) The input
current vanishes. (ii) The voltage difference between the inputs is zero.

• A current amplifier converting the input current to an output voltage can be built
using an operational amplifier. The output voltage depends on the feedback resis-
tance as Vout = −IinRFB.

• In the proportional controller, the actuating variable is proportional to the error
signal. In the integral controller the actuating variable is proportional to the time
integral over to the error signal.

• The transfer function, output signal divided by the input signal (including ampli-
tude and phase), is used to characterize the frequency response of electronic com-
ponents.
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Chapter 6
Lock-in Technique

A lock-in amplifier measures a signal amplitude hidden in a noisy environment. An
ACmodulation is used tomeasure the signal in a very narrow frequency range. Using
the lock-in technique the noise can be even much larger than the signal which can
nevertheless be measured precisely. In dynamic atomic force microscopy is used for
instance to detect the oscillation amplitude.

6.1 Lock-in Amplifier–Principle of Operation

In order to see what the task is for a lock-in amplifier Fig. 6.1, shows an AC signal
with different levels of noise superimposed. The original signal is shown in red and
an increasing amount of noise amplitude is added to the signal from Fig. 6.1a, b.
It may seem hopeless to try and recover the original signal amplitude in Fig. 6.1b,
which is buried by a large noise signal. Two important requirements are needed for
the lock-in technique to accomplish this task. First, the frequency of the AC signal
has to be known and, second, the phase of the signal has to be stable.

In order to explain how a lock-in amplifier works, we look to the product of two
harmonic signals. The following mathematical identity holds for the product of two
harmonic functions at two different frequencies

A cos(ω1t + φ) × B cos(ω2t)

= 1

2
AB {cos [(ω1 + ω2)t + φ] + cos [(ω1 − ω2)t + φ]} , (6.1)

where A and B are the amplitudes of both harmonic functions, respectively and
ω1 and ω2 are the corresponding angular frequencies, respectively and φ a phase
difference.

We now discuss the result for two cases. If ω1 = ω2 the first cos term results
in a harmonic signal (AC component) with frequency ω1 + ω2 = 2ω1. The cos
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Fig. 6.2 a Product of two phase-coherent harmonic functions with identical frequency ω1 = ω2
results in a DC component plus a harmonic component. b Product of two phase-coherent harmonic
functions with different frequencies ω1 �= ω2 results in a harmonic signal without DC component

term containing the frequency difference results in a DC component of the value
1
2AB cosφ. The sum of both terms (AC component and DC component),
corresponding to the product of the two harmonic functions, is also visualized in
Fig. 6.2a. Thus, the product of two harmonic signals of the same frequency results
in a DC component plus a harmonic signal.

If ω1 �= ω2 the product of the two harmonic signals can be written as the sum of
two harmonic signals oscillating with the sum and the difference of ω1 and ω2. In
this case, the product signal has no DC component, as shown in Fig. 6.2b.

In the next step of the lock-in detection, the DC component of the product signal
is extracted by time averaging or low-pass filtering of the product signal as

lim
T→∞

1

T

T∫

0

A cos (ω1t + φ) × B cos (ω2t) dt =
{

1
2 AB cosφ ω1 = ω2

0 ω1 �= ω2
(6.2)
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Fig. 6.3 Schematic of a lock-in amplifier consisting of a reference oscillator which modulates (via
the experimental setup) the output signal of the system. This signal serves as input for the lock-in
amplifier and is multiplied by the reference signal and then low-pass filtered. Due to this, only the
frequency component close to the modulation frequency survives and all noise components at other
frequencies are suppressed by this modulation technique

For the case ω1 �= ω2 the signal is a harmonic signal without DC component.
Therefore, the averaging results in the signal vanishing completely. For the case
ω1 = ω2 the time averaging filters out just the DC component of the product signal
1
2AB cosφ, which is proportional to the signal A that we want to measure. Addition-
ally, the result is proportional to the phase difference between the input signal and
the reference signal. Due to this, the lock-in technique is also called phase-sensitive
detection.

The phase sensitive detection can also be used to suppress parasitic signals with a
fixed phase relation to the desired signal. Let us assume as an example the measure-
ment of a (resistive) AC current signal. The signal wire will form a capacitor with
the surrounding ground, leading to a parasitic capacitive current. Since this parasitic
signal component has a phase difference of 90◦ (relative to the desired resistive sig-
nal), the capacitive signal can be suppressed by adjusting the phase appropriately
according to (6.2).

In conclusion: by time averaging, all (noise) frequency components with ω1 �= ω2

are filtered out and only the frequency component at the reference frequency ω2

survives with an amplitude proportional to the signal to be measured. The noise
frequency components (for instance 50/60Hz line frequencies) are filtered out by the
lock-in amplifier. A schematic diagram of a lock-in amplifier is shown in Fig. 6.3.
In the first stage of a lock-in amplifier, the input signal of amplitude A (which is the
signal amplitude to be measured modulated by the reference signal at frequency ω
plus a lot of noise) is multiplied by the reference signal (of known amplitude B). In
a second stage the time averaging filters out the high-frequency component.

While the lock-in amplifier is very effective in noise reduction, noise components
with a frequency close to the reference frequency result in low frequency contribu-
tions in the product signal at a frequency (ω1 − ω2). Long integration times of about
τ ≈ 2π/(ω1 − ω2) are required in order to average these low frequency components
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Fig. 6.4 Schematic of a two channel lock-in amplifier. Measuring X and Y and subsequently
applying some arithmetic calculations leads to the simultaneous determination of the absolute
value of the amplitude and the phase

out. The reference frequency of the lock-in amplifier is usually chosen in a frequency
range where the noise signal has the smallest spectral density. These considerations
apply for coherent noise. Noise components with an unstable phase φnoise �= const.
average out even if they are at the reference frequency.

Also a DC offset added by the experimental apparatus to the measurement signal
is suppressed by lock-in detection. If this constant signal component is multiplied
by the reference signal a harmonic signal oscillating around zero results, which is
averaged out by the time averaging.

If the measured signal has a phase shift φ relative to the reference signal induced
by the experiment, the output of the lock-in amplifier is also proportional to cosφ.
This phase shift can be compensated by a corresponding phase shift of the reference
signal in the lock-in amplifier, as shown in Fig. 6.3. The phase shift is optimized in
order to obtain a maximal output signal amplitude (or better vanishing output and
subsequently applying a phase shift of ±π/2.

The absolute values of the amplitude and the phase can also be measured simul-
taneously. A scheme for performing such a measurement is shown in Fig. 6.4. In one
channel the usual measurement is performed (channel X ), while in the second chan-
nel phase of the reference signal is shifted additionally by −90◦ (channel Y ). The
term for the reference signal in channel Y becomes B cos(ωt − 90◦) = B sin(ωt). If
we neglect the constant factor 1/2 B this results for the channel X in X = A cosφ, as
discussed before for the single channel lock in amplifier. For the channel Y , we apply
the reasoning for the lock-in amplifier as in (6.1), however, using the identity for sin
times cos, results (after time averaging) in the signal Y = A cos(φ − π/2) = A sin φ.
Expanding this to complex variables X̃ = Aeiφ and Ỹ = Aeiφ−π/2 as shown in
Fig. 6.5 helps to calculate amplitude and phase. The absolute value of the ampli-
tude A and the phase shift φ can be determined from the measured values X and Y as
A = √

X2 + Y 2 and φ = arctan(Y/X). In digital lock-in amplifiers, the measured
values X and Y are available as numbers and the computation can be performed
arithmetically.
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Fig. 6.5 Simultaneous
determination of the
amplitude A and the phase
shift φ of the signal by a
measurement with an
additional phase shift of 90◦,
using a two-channel lock-in
amplifier

A lock-in amplifier is used for the measurement of small AC signals with virtually
arbitrary noise reduction (determined by the integration time), provided that the AC
signal is coherent (stable phase) and the frequency is known.

Up to now, we have considered the measurement of amplitude and phase of an AC
signal. However, the lock-in technique can also be used if the signal to be measured
is a DC signal. In this case the DC signal is converted to an AC signal by modulation,
i.e. multiplied by an AC reference signal to obtain a phase stable AC signal of a
known frequency.

It could be assumed that a DC signal can be measured with high precision using
long averaging times, i.e. low bandwidth without lock-in technique. However, at
DC a particular type of noise, the 1/ f -noise (occurring in many electronic devices)
which becomes very large at small frequencies impedes high precision DCmeasure-
ments. The modulation of a DC signal with an AC reference signal transfers the DC
amplitude to an AC amplitude, avoiding the 1/ f -noise problem. In the frequency
domain the signal is transferred from DC, where it is prone to 1/ f -noise to a higher
frequency AC signal at which the lock-in detection technique can be applied.

6.2 Summary

• The lock-in technique is an AC modulation technique used to detect small AC
signals hidden in a noisy environment.

• Multiplication of the measurement signal by the reference signal results in a DC
component proportional to the amplitude of the measured signal at the modulation
frequency. For all other frequency components of the measurement signal, multi-
plication by the reference signal results in an AC component, which is averaged
out by time averaging.



Chapter 7
Data Representation and Image
Processing

Scanning probe microscopy data usually have the form of a matrix where the
topography (height) or some other signal such as the phase in dynamic AFM is
measured as a function of the lateral xy-position on the surface. Data representation
is the task to map the heights (i.e. the output of the z-controller) to gray levels in an
image in an optimal way. Image processing is used in order to enhance the image
representation further, i.e. by removing image artifacts such as high-frequency noise,
noise pixels or noise lines [1, 2].

7.1 Data Representation

A data representation using 8-bit or 256 gray levels (ranging from 0 (black) to 255
(white)) is more than sufficient, since the human eye can distinguish only less than
one hundred gray levels. These data are displayed as an image of typically 512 ×
512 pixels.

The original data on the height of the tip (z-output signal of the digital feedback
loop) are usually set by digital-to-analog converters (DAC) with a certain resolution.
In the following, we consider 16-bit converters as an example (≈65,000 levels),
while nowadays 24-bit DACs are available. The task for data representation is now
to efficiently map the data, which cover a certain range of the 65,000 levels (DAC
units), to the 265 gray levels. This task is also called background subtraction. As an
example, we will discuss this first for one scan line. However, the same strategies
apply for a whole image. As a convention for the gray levels black is assigned to
the lowest height and white to the highest. If one were to map the 16-bit data range
linearly from the lowest level to the highest level to the 8-bit gray scale from black to
white notmuch of the surface structurewould be visible. One scan line usually covers
only a small range of the 65,000 levels. As an example, the scan line shown in Fig. 7.1
contains a range of about 800 height levels (DAC units). If the 256 gray levels were
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Fig. 7.1 For a good data
representation the 256 gray
levels have to be mapped to
the 65,000 DAC levels in a
proper way
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mapped to the complete range of 65,000 digital-to-analog converter (DAC) levels,
(level 0 is black and level 65,000 is white) a range of 65,000/256 = 256 height levels
would be mapped to one gray level. It is clear that most of the information contained
in the original data is lost by this poor mapping. For our scan line in Fig. 7.1, the
800 height levels in which the image information is contained would be mapped to
only 3 gray levels (800/256 ≈ 3). Therefore, the gray scale should be mapped to a
smaller range of the 65,000 digital-to-analog converter (DAC) levels which contain
the (height) data of the scan line, as shown in Fig. 7.1.

Another effect is that the actual topographic data are often hidden due to the quite
large slope of a scan line. This slope arises because the scanning plane is usually tilted
slightly with respect to the sample. This tilt occurs due to an imperfect alignment of
the sample relative to the coordinate system of the scanning piezo element. In the
following, we term this the scanning slope, which can be as large as several degrees.
This scanning slope shows up as a tilted base line in the data as shown in Fig. 7.1.
Usually, and specifically in atomically resolved images, the range of the real height
values on the surface is very small (only a fewÅ), and the rangeof themeasuredheight
data is dominated by the scanning slope. Here we give two quantitative examples in
which we consider a relatively large tilt angle between surface and scanner of 3◦. If
we consider an image of the size of 1µm the height difference induced by this slope
across the image is �h = �x tanα ≈ 500Å. This 500Å on an image size of 1µm
corresponds to a scanning slope which will be present in all images. If we consider,
on the other hand, that we have as the real image signal, for instance, 5 atomic steps,
each of 3Å height, the image signal we want to measure (15Å) resides on a scanning
slope of 500Å. This means that the background height change due to the slope is
30 times larger than the image signal (the steps). In a second example, we take an
atomically resolved image of a size of 500Å, corresponding to a height difference
due to the scanning slope of 26Å. If the atomic corrugation on a single atomic terrace
is 1Å the (atomic corrugation) signal to (scanning slope) background ratio is 1/26
in this case.
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Fig. 7.2 STM data taken on a stepped Si(111) surface with the atomically resolved (7 × 7) recon-
struction contained in the data. Comparison of different kinds of background subtraction for a single
scan line (left panel) and a whole image (right panel). a and b Show the original data without back-
ground subtraction. In c and d a line-by-line background subtraction was applied. In e and f a plane
subtraction relative to one of the terraces, between steps of a single atom height, was applied. The
image size is 600Å. In this image, the scanning slope in the x-direction corresponds to an angle of
0.7◦ between sample and scanner
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We have seen that even a small tilt between sample and scanner leads to a substan-
tial slope in the images. This slope can be eliminated by a background subtraction.
This is usually done by fitting a straight line to the data of each scan line and by dis-
playing only the deviations of the data with respect to this fit, as shown in Fig. 7.2c, d.
This background subtraction increases the contrast in the image, but also leads to
artifacts like the black shadows (i.e. one terrace has no uniform gray level) which
arises due to some higher parts of the scan line which pull the fitted line up. The
next higher approximation is to use a fit to a quadratic function as background. This
can also remove the part of the background that arises from the scanner bow (and
non-linearities of the piezo elements) in large scans. The scanner bow arises because
the xy-motion induced by the tube scanner is approximately a motion on a sphere
with a radius of the piezo tube length.

Another kind of background subtraction is not taking each line individually into
account, but the whole matrix of measured data as one entity. Here the obvious
approaches are to fit a plane or square function (paraboloid) to the data for background
subtraction. Another approach is that the user can define points in an image which
are known to belong to one specific height (for instance one atomic terrace). The
background subtraction is then performed relative to this user-defined plane. An
example of this background subtraction relative to a user defined plane is shown
in Fig. 7.2e, f. The different methods of background subtraction each have their
advantages and disadvantages. The advantage of the (user-defined) plane subtraction
is that locations of the same height on the surface are displayed by the same gray
level. The advantage of line-by-line subtraction is that the contrast is higher and the
small height corrugations due to the atomic structure of the Si atoms are more easily
visible. As another variant the whole contrast range from black to white can be used
for one atomic terrace, leaving however all lower terraces black and all higher ones
white. This is also called clipping. If you see larger areas in an image either white or
black, the real data are outside the contrast range and are clipped to black or white.
A helpful tool to see the distribution of the gray levels contained in an image over
the 256 available gray levels is an histogram of the gray levels in an image. Such a
histogram of the gray levels shows if the gray levels are evenly distributed or if some
gray levels are (almost) not occupied in the respective image.

Apart from the gray scale images considered so far, it is, of course, also possible
to use color in the image representation. In the false color representation, the 8-bit
gray scale palette is replaced by a color palette. The most popular one is the fire
palette ranging from black via red and yellow to white. In Fig. 7.3a a gray scale
representation (subtracted line-by-line) of a stepped Si(7 × 7) surface is used, while
in Fig. 7.3b a false color representation with the fire palette is used. In Fig. 7.3c a
plane subtracted representation of the same image is shown in gray scale and false
color representation using a palette with several colors is shown in Fig. 7.3d. Here
the palette was chosen such that each terrace has a specific color. In Fig. 7.3e a 3D
image representation of the same image is shown. Here techniques like rendering
and ray tracing are used to give a plastic impression of an actual three dimensional
landscape of the measured data. While such images look like the real morphology of
a landscape it must be kept in mind that the z-scale in SPM images is almost always
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Fig. 7.3 STM image of a Si(111)-7 × 7 surface shown in different representations. Line-by-
line background subtraction using a a gray scale palette and b a color palette. Plane background
subtraction on one terrace c with gray scale palette and d a color palette with different colors for
each atomic terrace. e Three dimensional representation of the same image
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quite exaggerated relative to the lateral scale. For the example in Fig. 7.3e, the z-scale
in the image is only 12Å, while the image size is 600Å. Going one step further a fly-
bymovie through the atomic or nano canyons at the surface can be generated.With all
these different kinds of image representations it should not be forgotten that they are
only different representations of the same initial data matrix. The appropriate image
representation should always be chosen for the respective purpose. An elaborated
image representation with a lot of colors may be well suited to impress laypeople
but may obscure the visibility of important details. Therefore, a simple gray scale
representation is often sufficient to convey the scientific information.

7.2 Image Processing

The application of image processing filters has two purposes. First, to enhance the
image representation contrast above that possiblewith simple background subtraction
and, second, to remove image artifacts such as high-frequency noise, noise pixels or
noise lines. These are often eliminated by simple matrix filters. These filters consist
of a sum of products of nearby pixel values with elements of a weighting matrix.

Matrix or convolution filters are used (a) to remove noise from the images, (b)
to sharpen (high-pass), or (c) to smoothen (low pass) the images. The following
algorithm describes the 3× 3 convolution of image pixels. The measured value of
an image pixel in the image matrix z(x, y) is replaced by a modified value z′(x, y)

z′(x, y) =
∑x+1

i=x−1

∑y+1

j=y−1
W(i−x+2, j−y+2)z(i, j)

∑3

i=1

∑3

j=1
|W (i, j)|

. (7.1)

Depending on the properties of the matrix W high-pass, low-pass and other kinds of
filters can be realized [3].

Another very simple and effective filter is the median filter. It removes speckle
noise in the images, i.e. pixels which have, a very different gray value than the
neighboring pixels. The advantage of this filter is that it does not lead to a pronounced
blurring of sharp edges in the image, as other averaging filters do. For a median-
filtered pixel consider the 8 pixels surrounding one pixel plus the center (original)
pixel (9 pixels) and take as the new (gray) value for the center pixel the median of
these nine pixels. The median is not the mean of the 9 pixels but the 5th highest value
(i.e. the middle value, which is 68 in the example in Fig. 7.4a). The same procedure
is applied to all pixels in the image. Median filtering is robust with respect to outlier
pixels which would influence the mean considerably but not the median. In Fig. 7.4b,
an imagewithwhite noise pixels is shown and Fig. 7.4c shows the image after median
filtering.

Another frequently applied method for filtering SPM images is Fourier filtering.
However, this kind of filtering is often not very useful for “improving” images. From
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Fig. 7.4 a Example of the median filter showing gray values in a matrix of 8 pixels around a center
pixel. When applying the median filter, the value of the center pixel is replaced by the fifth highest
value (68 in the example). Thus, the outlier value of 255 is replaced by the more reasonable value
of 68. b STM image of triangular Si islands on Si(111) with speckle noise. c After median filtering
this noise is removed

the 2D Fourier transform of an image some parts considered to be noise are cut out
and a reverse transformation is performed.With this procedure the image information
in the respective frequency range is removed also. The emphasis in Fourier filtering
is on enhancing the periodic part of the image, while in SPM often the defects and
deviations from a periodic ideal lattice are interesting. Strong Fourier filtering can
highlight the periodic part so strongly that atoms are “produced” by Fourier filtering
and defect sites are “filled” by atoms.

One useful application of Fourier analysis for SPM images is the identification
of a long-range periodic corrugation signal in the image which may be hidden by
noise in the original image. Another application of a Fourier transform is to compare
quantitatively two different periodicities which are present in one image, for instance
the atomic lattice and an additional periodic long-range modulation, as for instance
a Moiré pattern.

It is important to mention in detail in presentations and publications which kind
of image processing algorithms have been applied to the original data.
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7.3 Data Analysis

There are a whole range of image analysis procedures which are often very specific
to the problem under study. For instance, if in studies of epitaxial growth, island
populations are analyzed, questions arise like: What is the island density per area?
Also other questions about the distribution of the volume, the width, or the height
of islands can be answered using AFM data. In principle, all questions related to the
morphologyof the surface canbe answered, since the complete surfacemorphology is
measured. Such analysis tasks can be performedmore or less automatically.However,
such data analysis procedures are very specific to the problem considered and we
will not discuss them further here.

Amore general example of data analysis is the measurement of the roughness of a
surface. The complex 3D information contained in a topographic image of a sample
is condensed in a single number. The usual quantity characterizing the roughness
of a surface is the RMS roughness defined as the standard deviation of the heights
h(x, y)

σ =
√〈

(h(x, y) − h)2
〉 =

√
1

N

∑N

i=1
(h(x, y) − h)2, (7.2)

with N being the total number of pixels in the image, and h̄ the average height.
Another quantity describing the roughness is Ra which is defined as

Ra = 1

N

∑N

i=1

∣∣h(x, y) − h
∣∣ . (7.3)

A necessary requirement for a correct determination of the roughness is a good
background subtraction of the scanning slope. Further, a roughness present on length
scales larger than the image considered for the evaluation of the roughness does not
enter in quantities for the roughness considered above. On the other end towards
roughness at the smallest length scales, any roughness on length scales smaller than
the radius of the AFM tip is not captured properly (cf. Fig. 8.2).

A simple and general procedure for data analysis is the line scan. By mouse click-
ing on the image, a line is defined in an image on the computer screen and the height
levels along this line (sometimes averaged over a certain width perpendicular to this
line) are displayed and can be used for high-accuracy measurements of topographic
heights as shown in Fig. 7.5, or horizontal spacings of features. Also the slopes of
facets of surface features such as islands can be determined. Note that in AFM line
scans like the one in Fig. 7.5b the vertical scale displayed is much smaller than the
horizontal scale, leading to apparent facet angles much larger than the real ones.

In the following we discuss a flaw that can occur when facet angles of an island
are to be determined with a high precision using a line scan. This flaw occurs if a
scanning slope is present, i.e. an angle α between the reference plane of the sample
and the xy-plane of the AFM scanner. We will show in the following that the facet
angle β of an island like the one shown for example in Fig. 7.6a are measured by a
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Fig. 7.5 a Gray scale image of a 3D Ge island. b Line scan across this island
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Fig. 7.6 The measured facet angles of an island depend (after a linear background subtraction) on
the scanning slope α. a If there is no scanning slope (α = 0), the correct facet angle β is measured.
b Raw data obtained by an AFM, if a scanning slope is present. c Result of a line scan across the
island after a linear background subtraction of the scanning slope. In this case measured facet angles
γ and δ different from the real facet angle β result

line scan, after background subtraction of the scanning slope, as facet angles γ and
δ instead of the correct angle β.

In Fig. 7.6a an island with two facets with angle β relative to the sample reference
plane (x-direction) outside of the island is shown. If the x-direction of the sample
is not inclined relative to the x-direction of the AFM scanner, the line scan of the
AFM image measures the correct facet angle β of the island. However, usually the
sample xy-plane is inclined up to several degrees relative to the xy-scanning plane,
which corresponds to the scanning slope introduced in Sect. 7.1. This case is shown
in Fig. 7.6b in which the sample x-direction is inclined by the angle α relative to the
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Fig. 7.7 a Facet angles γ
and δ according to (7.4) after
a linear background
subtraction. The lines
represent three different
angles of the scanning slope
α as function of the facet
angle β. For larger values of
α and β the facet angles
measured after a linear
background subtraction
deviate from the real facet
angle β. For α = 0, γ and δ
are equal to β

AFM scanner x-direction. The topography shown in Fig. 7.6b corresponds to the raw
data measured by an AFM.

If now a background subtraction is made in a way that scanning slope is removed
and the surface plane outside the island becomes horizontal, as shown in Fig. 7.6c,
this leads to facet angles γ and δ differing from the correct facet angle β. Working
out the trigonometric relations results in

tan γ = sin β

cosα · cos(α + β)
, and tan δ = sin β

cosα · cos(α − β)
. (7.4)

The facet angles γ and δ, are plotted in Fig. 7.7 for three different angles of the
scanning slope α as function of the facet angle β. Without scanning slope γ = δ = β
(straight line in Fig. 7.7). It can be seen that for larger values of α and β the measured
facet angles after a linear background subtraction (γ and δ) deviate from the real facet
angle β. In order to determine the actual facet angle β from the measured angles γ
or δ, the equations (7.4) have to be inverted, resulting in

β = arctan

(
cos2 α

cosα · sinα + 1
tan γ

)
, and β = arctan

(
cos2 α

− cosα · sinα + 1
tan δ

)
.

(7.5)
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We have discussed here the measurement of the facet angle in the presence of a
scanning slopeα using a one-dimensional line scan, as this is the procedure applied in
most cases.We have seen that themeasured facet angles (after linear background sub-
traction) do not (exactly) correspond to the real facet angle. An alternative approach
to determine the real facet angle is to take the measured raw data Fig. 7.6b and pre-
form a rotation of the entire image (or the line scan) instead of a linear background
subtraction. A rotation in order to remove the scanning slope preserves the facet
angle β. The above considerations were performed for an ideal tip shape. Of course
the tip shape (and other effects like drift and piezo creep) can additionally influence
the measured facet angles.

7.4 Summary

• Data representation is the task to map the measured heights (DAC values) to gray
levels in an image in an optimal way.

• Line-by-line background subtraction and plane background subtraction are com-
monly used.

• Matrix filters can be used to sharpen, or smooth the images, or to remove outlier
pixels.

• In order to measure heights, width, or slopes of topographic features line scans
can be used as data analysis tool.

References

1. P. Klapetek, Quantitative Data Processing in Scanning Probe Microscopy, 2nd edn. (Elsevier,
Amsterdam, 2018). ISBN 9780128133477

2. P. Eaton, K. Batziou, Artifacts and practical issues in atomic force microscopy, in Atomic force
microscopy, ed. by N. Santos, F. Carvalho. Methods in Molecular Biology, vol. 1886 (Humana
Press, New York, 2019). ISBN 978-1-4939-8893-8. https://doi.org/10.1007/978-1-4939-8894-
5_1

3. J.C. Russ, F.B. Neal, The Image Processing Handbook, 7th edn. (CRC Press, Boca Raton, 2017).
ISBN 9781138747494

https://doi.org/10.1007/978-1-4939-8894-5_1
https://doi.org/10.1007/978-1-4939-8894-5_1


Chapter 8
Artifacts in AFM

The ideal AFM tip is (from the point of view of surface imaging) a sharp needle
which can image even surface features with high aspect ratio. If the tip has a broader
shape, artifacts occur due to a convolution of the tip shape with the surface features.
Nearby micro tips can lead to a doubling of surface features in the acquired AFM
image. Other kinds of artifacts in atomic force microscopy [1–3] include thermal
drift, feedback overshoot, piezo creep, and electrical noise. While the images shown
in this chapter are STM images, they show examples of generic effects of SPM
artifacts which appear also in AFM images.

8.1 Tip-Related Artifacts

The geometrical shape of the tip will always influence the AFM images taken with
it. The most common artifacts in atomic force microscopy occur due to tips which
are not sharp (enough). Roughly topographic features present on the surface which
have a larger aspect ratio than the tip are not imaged correctly. The acquired image is
a convolution of the probing tip shape and the sample topography. Due to this effect,
topographic features protruding from a flat surface are broadened. In extreme cases,
if sharp asperities are present on the surface the tip shape is imaged by the surface
asperities (tip image). The principle of how the tip shape influences the image of a
sharp surface feature is shown in Fig. 8.1a. A sharp asperity on the surface is only
imaged properly with an equally sharp (or sharper) tip.

An example of this is shown in Fig. 8.1b, where carbide clusters with a high
aspect ratio are imaged on a Si surface. Each carbide cluster is imaged as a small
high protrusion surrounded by amuch larger “halo”.All clusters appearwith the same
shape, which is the shape of the tip. In the image in Fig. 8.1c, we can see that the tip
form changes during the image acquisition. In the upper part of the image the carbide
clusters appear larger due to a blunt tip, while the tip changes to a somewhat sharper
shape in the middle of the image. This occurred during a tip-sample contact. Traces
of this are visible in the left part of the image. However, the tip shape is still not ideal
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Tip 1 Tip 2 Tip 3(a)

(b) (c)

Fig. 8.1 a Sketch of the principle of how the tip shape influences the image of a sharp asperity
present on the surface. b Example in which high aspect ratio carbide clusters are imaged by a blunt
tip. All imaged clusters have a similar apparent shape: the tip shape. c Image of carbide clusters
showing a change of the tip shape in the middle of the image

in the lower part of the image, as higher clusters are imaged as three protrusions, due
to the tip shape, as indicated by arrows in Fig. 8.1c. AFM cantilevers have usually
tips with a pyramidal shape. Thus, if in an image pyramidal facets appear, this can
be due to the AFM tip shape. In some cases facets with the slope of the pyramidal
tip occur rather than artifacts with complete pyramids [2].

Generally, (since delta function like tips do not exist) in images influenced by
artifacts due to the tip shape the imaged structures have larger apparent lateral sizes
than the real structures, if they are protrusions above a flat surface level (Fig. 8.1).
If depressions below the average surface level are imaged with a blunt tip, they
appear (due to the tip shape) correspondingly smaller in the AFM image. While the
lateral width of surface structures is influenced by tip-related artifacts, the height is
measured correctly, if the tip returns to the average surface height, as it is the case in
Fig. 8.1.
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In images influenced by the tip shape the imaged structures do not necessarily
have all the same shape. This is only the case if the imaged structures have all the
same shape (or are much smaller than the tip), as it is the case in Fig. 8.1. However,
induced by a particular tip shape, the imaged structures often obey similarities due
to the convolution with the tip shape, e.g. they appear elongated in one particular
direction.

A test which can be made in order to verify if a particular shape occurring in a
similar way for different imaged structures occurs due to the tip shape is to rotate the
sample by 90◦. If the images structures appear also to “rotate” by 90◦, then the shapes
of the imaged structures are a true property of the sample. If the imaged structures
do not rotate, they are an artifact of the tip shape. To rotate the scan direction can not
be used to distinguish between a tip-related artifact and a real topographic feature:
In the corresponding AFM images the imaged features will show up as rotated in
both cases, as the relative orientation between tip and surface does not change by
scanning a rotated image.

As a rule of thumb, all topographic features which have a radius of curvature
smaller than the radius of curvature of the scanning tip, are not imaged properly.
Many attempts have been made to use a mathematical deconvolution to recover the
real surface topography. However, such attempts are limited due to the following
three reasons: (a) Even for a known tip shape a full recovery of the true topography
by deconvolution is not completely possible at sharp trenches or close to sharp
asperities, because there are “dead zones”, i.e. parts of the surface topography which
are never reached by the tip as shown schematically in Fig. 8.2. (b) Most importantly
the tip shape is generally unknown and a “measurement” of the tip shape at sharp
needle-like structures on the surface is often not really practicable. (c) The tip shape
may change often. Therefore, any tedious measurement of the tip shape does not last
for long. Probably not until deconvolution is attempted. Due to the occurrence of
dead zones the height of a structure measured with an AFM is smaller or equal to
the real height of this structure.

Dead zones: not imaged by a blunt tip

Fig. 8.2 Schematic showing the occurrence of “dead zones” due to the blunt shape of the tip
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Fig. 8.3 a Sketch of a double (multiple) tip giving rise to doubled (multiple) imaging of surface
features. The light red line shows the trace of the tip above the surface. b Example of silicide
nano islands and nano wires imaged. The higher the structures which are imaged, the stronger
is the tendency towards double (multiple images). For structures of one atomic height a single
tip apex images (red arrows), somewhat higher structures are imaged by a double tip apex (blue
arrows). Even higher structures are imaged by even more micro tips (green arrows). Narrow and
high structures result in an image of the tip structure instead of the surface feature (gray arrows)

One particular case of a blunt tip is a double/multiple tip, as shown schematically
in Fig. 8.3a. Such a double tip gives rise to double imaging of features on the sur-
face as the islands and nanowires. These double images always occur at the same
mutual distance and orientation in the images as indicated by blue arrows in Fig. 8.3b.
Depending on the height of the imaged features, the tip acts as a single tip for features
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Fig. 8.4 Image of 5Å yttrium deposited on Si(110). a Silicide nanowires imaged with a sharp tip.
b The same surface imaged with a blunt tip leads to much higher apparent coverage due to multiple
images of the silicide nanowires

of a single atomic height (indicated by red arrows in Fig. 8.3b), as a double tip for
somewhat higher features (indicated by blue arrows in Fig. 8.3b), or as five or sixfold
tip for even higher features (indicated by green arrows in Fig. 8.3b). Narrow and high
structures present on the surface result in an image of the tip structure instead of the
surface feature (gray arrows).

The images in Fig. 8.4 show that a (blunt) tip can give rise to a completely wrong
estimate of the deposited coverage in thin film growth experiments. In Fig. 8.4a, a
Si(110) surface is imaged on which 5Å yttrium was deposited, which can be seen as
elongated silicide wires on the surface. The same surface (however, not exactly the
same area) was also imaged in Fig. 8.4b, with a different blunt tip. Here the silicide
coverage appears to bemuch higher. This is not real, but an effect of a blunt tip where
the silicide nanowires appear to be multiply imaged by several micotips forming the
blunt tip.

The lesson from the previous considerations should not be that you cannot believe
any AFM images, but rather you should always critically reflect on your AFM mea-
surements and to reproduce measurements with different tips in order to exclude tip
artifacts as carefully as possible.

How to Identify Tip-Related Artifacts

• If all (or many) features on the sample have the same shape, or all the features have
an elongated shape in the same direction this is an indication of a blunt tip which
is “imaged” by the surface. AFM cantilevers have usually tips with a pyramidal
shape. Thus, if in an image pyramidal facets appear, this can be due to the AFM
tip shape.

• If the sample is rotated (e.g. by 90◦) and the image “rotates” with the sample, the
imaged features are not influenced by the shape of the tip.
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How to Avoid Tip-Related Artifacts

• The only way to avoid tip related artifacts is to use a tip which is sharp enough that
the images are not influenced by the shape of the tip. What means “sharp enough”
depends on the features to be imaged.

• If there are doubts about the sharpness of the tip, the tip should be exchanged.

8.2 Scanner-Related Artifacts

Scanner artifacts appear due to the non ideal behavior of the piezoelectric actuators,
such as non-linearity, creep and hysteresis, as discussed in Sect. 3.5. These effects
lead to the behavior that the distance moved by the actuator is not linearly related to
the applied voltage. In AFM images these effects result in image distortions, which
are most apparent if periodic grid structures are imaged. On a sample with no regular
pattern these distortions are not easily recognized, but still present and can have a
magnitude of up to 25%. If a closed loop scanner is used (Sect. 4.2.2), these artifacts
are avoided.

An example of image distortion due to a non-linearity in the piezo extension
is shown in Fig. 8.5. A silicide nanowire, which is known to be straight due to its
crystallographic structure, is imaged as bent. If a tube scanner is used, the tip will
follow an arc, resulting in a non-linearity in the lateral directions, as well as the
vertical direction [4, 5].

When discussing problems of piezo actuators in Sect. 3.5, we have seen that the
new position is not reached instantaneously after the corresponding voltage change,
but is only reached asymptotically. If this creep is not yet finished this leads to
an image distortion in the AFM images. Artifacts due to creep appear often at the
beginning of an image resulting in a bending of all image structures, as seen in

Fig. 8.5 Image of a straight
silicide nano-wire, which
appears bent in the image
due to non-linearities in the
piezoelectric actuators
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Fig. 8.6 Bending of atomic
steps in the beginning of an
image of a Si surface
highlighted by arrows.
Additionally to this artifact
also an artifact due to a
double tip is present in this
image

Fig. 8.6. Specifically, when moving to a new lateral position away from the previous
one this effect is strong.

How to Identify Scanner-Related Artifacts

• Scanner related artifacts can be identified by imaging structures which are known
to be straight or periodic.

• Comparing trace and retrace images with opposite scan directions can help to
identify artifacts due to creep and hysteresis.

How to Avoid Scanner-Related Artifacts

• The best way to avoid scanner related artifacts is to work in closed-loop, i.e. to
have a sensor which measures the actual distance moved.

8.3 Feedback-Related Artifacts

Artifacts due to the feedback were already discussed in Sect. 5.8. If the feedback is
too fast, scanning over a sharp protrusion leads to an overshoot (with oscillations) as
shown in schematically Fig. 5.16. Different from this figure the overshoot (when the
tip moves sharply up) is not the same as the undershoot (when the tip moves sharply
down). This is because the difference between the setpoint value and the actual value
is different in both cases. If the setpoint value is e.g. 1nN in the static mode the lowest
measured value is a vanishing force, while in the other direction when approaching
the sample high force values of e.g. 10nN can occur. This makes the feedback in
both directions asymmetric and results in stronger overshoots than undershoots. A
similar looking artifact with overshoots and undershoots at sharp edges can occur
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due to creep. If at a sharp upwards edge the height is (initially due to creep) not yet
the equilibrium height, this leads to an overshoot of the z-voltage and thus the height.

If the feedback is too slow and when the tip moves sharply down a “flying effect”
can occur due to which the tip has no contact to the surface for a certain time.

How to Identify Feedback-Related Artifacts

• These artifacts can be identified due to their opposite behavior on the scan direction
(trace and retrace). When scanning a certain area two images can be created one in
the forward scan direction and one which the fast scan direction is scanned in the
opposite direction. Comparing both images overshoot and undershoot exchange
for feedback-related artifacts. This results in the effect that at sharply decreasing
edges in the image is blurred.

• These artifacts can be identified by monitoring the error signal i.e. the deviation
of the measured signal from the setpoint. The measured signal is the cantilever
deflection in the contact mode, or the oscillation in the dynamic AMmode. Larger
values of the error signal, particularly at steep steps in the topography, indicate
feedback-related artifacts.

How to Avoid Feedback-Related Artifacts

• Feedback-related artifacts can be avoided by optimizing the feedback parameters
as described in Sect. 5.8 or by reducing the scan speed.

8.4 Artifacts Due to Periodic Noise

Noise with a high amplitude at a specific frequency will show up as stripes superim-
posed onto the true topography of the surface. Electrical noise from the power line is
50Hz (or 60Hz) noise, which can be recognized as stripes in the images, as shown
in Fig. 8.7. Changing the scan speed will change the ratio of the 50Hz noise to the
frequency at which the scan lines are acquired. This has a massive influence on the
angle of the observed stripe patterns. To remove electrical noise, careful debugging
of the electronics has to be performed, including the removal of ground loops. Vibra-
tional noise can be acoustic noise or floor vibrations of the building. In the Sect. 3.6
on vibration isolation, we discussed how to avoid this kind of noise.

How to Identify Artifacts Due to Periodic Noise

• Artifacts due to periodic noise can be distinguished from topographic features by
changing the scan speed. Real topographic features are independent of the scan
speed while artifact related features due to periodic noise change their apparent
size (periodicity) with the scan speed (observed stripes change their angle).
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Fig. 8.7 Example of an
image which is strongly
influenced by 50Hz noise.
The three horizontal atomic
step edges are hardly visible
due to the strong 50Hz noise

How to Avoid Artifacts Due to Periodic Noise

• Artifacts due to periodic noise can be avoided by removing the respective source of
this type of noise: mechanic vibrations, acoustic noise, or electronic noise, which
is often a difficult task.

• Sometimes the apparent visibility of this type of noise in the images can be sup-
pressed (not removed) by changing the scan speed.

8.5 Thermal Drift

If tip and sample are at different temperatures or if the temperature in the room
changes, thermal drift occurs. Already small temperature changes of less than 1 ◦C
can result in a substantial drift on the nanoscale.

How to Identify Artifacts Due to Thermal Drift

• Artifacts/distortions due to thermal drift can be identified by repeated scanning of
nominally the same area. By the apparent shift of the same topographic features
in subsequent images the drift speed can be measured.

How to Avoid Artifacts Due to Thermal Drift

• After starting a measurement by inserting a sample into the AFM, some time
should be waited until sample and AFM have equilibrated.

• Temperature variations should beminimized. Particularly sun light shining directly
or indirectly to the AFM can induce thermal drift.
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• Fast scanning canminimize distortions due to thermal drift, however, other artifacts
like feedback related artifacts increase with the scanning speed.

8.6 Laser Interference

If the light from the laser diode (beam deflection AFM) reaches not only the backside
of the cantilever, but also the sample, interference between both beams occurs. This
type of artifact appears as oscillations in the images as well as in the baseline signal
when tip and sample are approached. The periodicity corresponds to the wavelength
of the laser light.

How to Identify Artifacts Due to Laser Interference

• Stripes in the image which do not change with the scan speed.
• Oscillations in the baseline signal upon tip-sample approach before tip-sample
interaction are visible.

How to Avoid Artifacts Due to Laser Interference

• The laser beam should be focused to the middle of the cantilever width, so that
almost no light shines on the sample.

8.7 Summary

• The shape of the tip influences the AFM images, resulting in multiple images. The
combination of sharp surface features with a blunt tip leads to the tip shape being
imaged.

• When imaging with a blunt tip, parts of the features at the surface are not imaged:
“dead zone”.

• Piezo non-linearity, creep, and hysteresis leads to distorted images, which can be
avoided by a closed loop operation of the scanner.

• Power line noise, feedback overshoot, thermal drift, and laser interference are
further sources of image artifacts.
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Chapter 9
Work Function, Contact Potential,
and Kelvin Probe AFM

We already used the term work function when we introduced the tunneling barrier
height in STM.Thework function can be considered as the energy difference between
the vacuum level and the Fermi level of a metal. Here we will see that also a surface
term contributes to the work function. The work function is a measurable quantity
and the operative definition of the work function is that it is the energy required to
remove an electron from the bulk Fermi level of a metal to a certain distance from
the solid.1

Subsequently, we introduce the contact potential between two metals with dif-
ferent work function, which is used by the Kelvin method for the measurement of
work function differences. In spite of the fact that we have not yet introduced AFM
in depth, in this chapter we already present the principles of Kelvin probe scanning
force microscopy (KFM), which is the nanoscale variant of the Kelvin method.

9.1 Work Function

The work function Φ of a metal can be defined as the difference between the energy
of an electron at some distance d outside of a solid Eout and the energy of the highest
occupied electron level (at zero temperature), i.e. the Fermi energy, thus

Φ(d) = Eout(d) − EF. (9.1)

This corresponds to an operative definition of the work function as the minimum
energy to bring an electron from the solid to some distance d outside the solid. The
kinetic energy of the electron outside the solid is considered as zero. Note that with
this definition the work function depends on how far the electron is removed from
the surface.

1This distance is specific to the actual type of measurement performed.
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As a limiting case, the energy to bring the electron from inside the solid to infinity
can be considered. Let us consider an infinite crystal filling a half space and being
terminated by an infinite surface of specific orientation. If the position of the electron
outside of the solid is infinitely far from the solid Eout will be the vacuum energy at
infinite distance from the surface E∞

vac and the work function results as

Φ = E∞
vac − EF. (9.2)

The usual definition of the work function as difference between vacuum energy and
Fermi energy hides the fact that the vacuum energy depends on the distance of the
electron from the surface.

The work function has two main contributions; one is due to the binding of the
electrons inside a solid. Theoretically, one can consider the binding of the electrons
inside a solid with different levels of sophistication, from the simple nearly free
electron model, the tight binding model, up to ab initio calculations. The essence is
always the same: The electrons are bound inside a solid and this bonding corresponds
to a lower energy of the electrons in the solid compared to free electrons. A second
contribution to the work function arises due to the passage of the electron through
the surface layer, which we will discuss in the following.

9.2 Effect of a Surface on the Work Function

Before we consider the effect of the surface on the work function, we note that the
effect of the presence of a surface has a negligible effect on the bulk states. Inside the
solid the potential of the positive charges of the nuclei is screened very effectively
by the electrons at distances larger than the Thomas-Fermi screening length [1].
The Thomas-Fermi screening length is usually very small in metals. For instance, in
copper the screening length is only about 0.5Å. Thus, inside the crystal everything
will remain as it was in the infinite bulk crystal since the contribution of the “missing”
atoms at the surface is vanishingly small due to the effective screening inside the
metal. The energy of the highest occupied electronic level in a metal terminated by
a surface will still be EF, as for the infinite crystal.

Now we consider how the changes of the electronic structure at the surface give
rise to an additional contribution to the work function, i.e. we consider the work
needed to bring an electron through the surface layer. Even if we consider a bulk
termination of the surface, which means that the positions of the atom nuclei remain
as in the bulk, i.e. undistorted up to the last atom at the surface, as shown for the 1D
crystal in Fig. 9.1a, the electron charge distribution near the surface deviates from that
in the bulk. Some charge will “spill out” into the vacuum as indicated qualitatively
in Fig. 9.1a. This “spill out” of charge is a quantum mechanical effect, as an electron
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Fig. 9.1 a Charge density in a metal crystal which is modified close to the surface and spills out
towards the vacuum. This behavior can be described qualitatively by a dipole layer of excess charge
density close to the surface. b Energy of an electron as function of the distance d from the surface
resulting from the charge density given in a. The passage of an electron through the dipole layer
leads to additional work Esurface which has to be done in order to remove an electron from the solid

can reduce its energy when it spreads out over a larger region.2 The “spill out” of
charge at the surface leads to the formation of a charge dipole at the surface with
negative charge “spilling out” towards the vacuum and less negative charge (i.e. a
positive excess charge) inside the crystal close to the surface as indicated in Fig. 9.1a.
The particular way in which the charge distribution at the surface deviates from the
bulk structure depends on the crystal structure at the surface (bulk terminated or
modified, i.e. known as reconstructed). When an electron is removed from the solid,
a contribution to the work function arises from the transfer of the electron through
the dipole layer.

The direction of the field in the dipole layer is (usually) such that an additional
amount of work Esurface has to be done to move an electron through the dipole layer.
The total energy to remove an electron at EF from the solid to some distance d
consists of a bulk contribution (binding energy) plus the work done by the electron
when passing through the dipole layer now reads

2This can be seen from a simple 1D particle in a box model, where the energy of an electron state
as a function of the quantum number n and size of the box L is

E(L) = �
2π2n2

2meL2 . (9.3)

With increasing L (“spill out” of charge) the energy decreases.
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Φ(d) = Φbulk + Esurface(d). (9.4)

The corresponding energy diagram is shown in Fig. 9.1b. Inside the solid the free
electron approximation is used with the energy levels filled up to the Fermi energy.
When passing through the dipole layer the additional contribution to the energy
Esurface is added. This surface contribution to the work function can be of the order
of up to 1eV.

The splitting of the work function into different contributions arises from the
different approaches used for each effect. A ab initio quantum mechanical theory
would include all these effects when an electron is moved from inside the crystal to
an distance from the crystal. Besides the influence of the surface which is difficult to
calculate with ab ab initio methods, also the electrostatic potential at larger distances
from the surface is difficult to calculate quantum mechanically. The correlation and
exchange forces outside the surface cannot be calculated quantum mechanically
up to large distances of 100nm. The electrostatic image potential is often used as
an approximation of the long-range behavior of the exchange-correlation potential
in the vacuum.3 On the other hand, for short distances the unrealistic divergence
of the classical image potential at the surface is avoided by a transition to quantum
mechanical calculations, which describe the region close to the surface better.

The work due to the electrostatic image charges (occurring when an electron is
moved out of the metal) reduces at the distance of 100nm to 1% of the value at 1nm,
and can thus be neglected for larger distances.

In conclusion we have identified three contributions to the work function: the
bulk contribution (binding energy), the surface contribution, and the image charge
contribution. These are the contributions which enter for a distance of the removed
electron up to 100nm. A further contribution occurs if the electron is removed to
distances comparable to the size of the sample, and results due to external electric
fields, as will be discussed in the next section.

9.3 Surface Charges and External Electric Fields

Now we consider (different from the semi infinite crystal considered so far) a finite
crystal with is terminated by different surfaces, as shown in Fig. 9.2. Different sur-
faces (with different atomic configurations) terminating a crystal, correspond to

3In classical electrostatics it is shown that the force between an electron at distance d from a
conducting plate is the same as the force between the electron and a positive elementary charge
located at a distance 2d from the electron (image charge), i.e. −e2/(4πε04d2). Integrating the
negative of this force from infinity to d results in the (image) potential of the electron (relative to a
position at infinity) as

Vimage(d) =
d∫

∞

e2

4πε04r
dr = −e2

4πε0

1

4d
. (9.5)
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Fig. 9.2 Due to energy
conservation, zero total work
has to be done in moving an
electron along the closed
path from inside the metal
crystal through surface S1
and back through surface S2.
This argument shows that the
two surfaces S1 and S2,
which are assumed to have
different work functions,
have to be at different
electrostatic potentials. This
different potentials are built
up by corresponding surface
charges

S1

S2

different “spill out” of charge. This leads to different surface dipoles and therefore
also to different work functions at different surfaces of a crystal. In the following, we
will show that these different work functions at different surfaces of a finite crystal
lead to the presence of net surface charges, and corresponding electric fields.

Let us take an electron on a closed loop from a point inside the crystal to a
position outside of the crystal through surface S1 and back through another surface
S2, as shown in Fig. 9.2. Leaving the crystal through surface S1 requires work E1

(surface work to leave the crystal through surface S1, plus of course also the bulk
contribution to the work function, which we leave out here, since it cancels out later).
If there were no net surface charges, the electric field outside the crystal would vanish
and there would be nowork to transfer the electron outside the crystal from surface S1
to surface S2. When the electron is inserted back into the crystal through S2, the work
−E2 (negative of the surface work to leave the crystal through surface S2) is gained.
Closing the path inside the metal does not involve energy, since the electric field
inside a metal is vanishing. Since the work functions of the two surfaces are different
(due to the two different surface contributions to the work function), a perpetuum
mobile could be built gaining the energy difference between the two work functions
(E1 − E2) on each cycle. Since this is clearly impossible, there must be an electric
field outside the crystal against which a compensating amount of work is done as
the electron is carried from S1 to S2. This means the two surfaces must be at two
different electrostatic potentials ϕ1 and ϕ2, satisfying the condition

e(ϕ1 − ϕ2) = E1 − E2 = Φ1 − Φ2. (9.6)

Since dipole layers cannot yield macroscopic fields outside the crystal these fields
have to arise from net macroscopic electric charges on the surfaces,4 which also lead

4All net charges are located at the surface of a metal, since the electric field vanishes in the interior
of a metal.



154 9 Work Function, Contact Potential, and Kelvin Probe AFM

to an external electric fields with a range corresponding to the size of the crystal. At
larger distances from the crystal these fields vanish.

In the following, we estimate which surface charge density is necessary to
“supply” the necessary energy to compensate for the surface-related work function
difference of the order of about 1eV when an electron is transferred macroscopic
distances from one metal surface to the other through the outer electric field. For a
rough estimate, we consider a plate capacitor arrangement (d = 1cm). The surface
charge per area A can be expressed as

ρsurface = Q

A
= VC

A
= V

A

ε0A

d
= V ε0

d
. (9.7)

The resulting surface charge corresponds to ∼5 × 10−8 electrons per surface atom.
This shows that even minute charge densities at the surface lead to considerable
work, since the distance over which the electric field extends are on the order of the
size of the crystal.

Now we will summarize the results on the work to remove an electron from the
solid as a function of the distance d. An electron is considered to be removed from
the highest occupied level at EF. At very short distances from the surface (<1nm),
the bulk contribution (bonding energy), as well as the surface contribution are the
main contributions to the work. (At surfaces with different electronic structure, the
different surface contributions lead to different work functions Φ1 and Φ2.) For
distances larger than 1nm from the surface these contributions remain constant. At
distances between 1 and 100nm the work due to the image charge effect is the only
distance dependent part of the work function. Between ∼100nm and ∼1mm (a
distance corresponding to the sample size) there are no further contributions to the
work function. When the distance of the electron removed from the solid becomes
close to the sample size, the work due to the external electric fields arising from the
previously discussed surface charges contribute to the work.

The work to bring an electron to infinity Φ∞ is independent on the work function
of the surface through which it passed.5 Any differences due to the surface work
are compensated by macroscopic electric fields created by the surface charges at the
different surfaces.

Experimental measurements of the work function are performed at a certain dis-
tance. Since most of the experiments are performed in a distance range between 100
and 1mm, in which the work function is independent of the distance, usually work
functions are considered as independent of the distance. An exception is scanning
probe microscopy. In scanning tunneling microscopy the distance to which the elec-
tron is transferred out of the solid is very small (<1nm). Thus, the image potential
and even the surface and bulk contributions can be distance dependent at such small
distances. The apparent barrier height Φ in STM is more a parameter than directly

5It is always assumed that the electron is at rest, i.e. there is no kinetic energy contribution to the
work.
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corresponding to the work function. Nevertheless, the apparent tunneling barrier
height is usually referred as “the work function” and also we will use this not correct
wording sometimes.

9.4 Contact Potential

Now we assume two (different) metals with different work functions which are ini-
tially not connected to each other Fig. 9.3a.6 In this case, bothmetals share a common
vacuum level, but their Fermi levels are not aligned, due to the different work func-
tions assumed. Suppose now that these two metals are connected (e.g. by a wire)
in such a way that electrons can flow freely from one metal to the other, as shown
in Fig. 9.3b. In this case, both metals share a common Fermi level. Since initially
the two Fermi levels were not yet aligned, electrons flow through the wire from the
metal with the higher Fermi level until equilibrium is reached. However, the charge
transfer in order to align the two Fermi levels does not occur in such a way that half
of the electrons between energy EF,1 and EF,2 flow from metal 2 to metal 1. A very
small transfer of charge builds up a surface charge at the metals and a corresponding
electric field E between them. According to (9.7), over the (macroscopic) distance d
these surface charges induce a potential drop Vcontact, which aligns the Fermi levels of
the metals. Due to the macroscopic distance only minute surface charges are needed
to build up a voltage on the order of the work function difference.

In equilibrium the condition

eVcontact = �Φ (9.8)

holds. The voltage Vcontact is called contact potential, because it occurs if a contact
between the metals is established, for instance by a connecting wire.

9.5 Measurement of Work Function by the Kelvin Method

Equation (9.8) suggests that a simple way to measure the (relative) work function
of a metal is to measure the contact potential (relative to a metal with known work
function) by connecting a voltmeter between themetals. However, this is not possible
since a continuous flow of current (through the voltmeter) would have been produced
without a sustaining source of energy. LordKelvin proposed a simpleway tomeasure
contact potentials by a capacitive method which is described in the following. The
two samples are arranged in such a way that the two surfaces form a plate capacitor

6We assume semi infinite crystals so that no surface charges are present and thus no electric fields
occur outside the crystals. Since in Fig. 9.3a macroscopic distance between both metals is assumed,
the work function rises within 100nm quasi vertically to Evac = E∞

vac.
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Fig. 9.3 a Potential energy diagram for two metals with work functions Φ1 and Φ2, which are
initially not connected and share thus a common vacuum level. b If the two metals are connected
by a conducting wire, the Fermi levels of the two metals align. A buildup of surface charge leads
to a macroscopic potential gradient compensating the difference between the work functions of
the two metals. c The surface charges and the corresponding electric field E vanish if a voltage
Vcomp = Vcontact = 1

e�Φ is applied between the metals

and an outer voltage called the compensation voltage Vcomp is applied between the
surfaces (Fig. 9.4). The total potential difference V can be written as

V = Vcontact − Vcomp. (9.9)

The charge on the capacitor is accordingly

Q = CV = C
(
Vcontact − Vcomp

)
. (9.10)

If the distance between the capacitor plates d is now modulated sinusoidally (for
instance by a piezoelectric actuator) with a small modulation amplitude a current
results as
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Fig. 9.4 The surfaces of two
metals are brought together
in a plate capacitor
configuration. When the
distance d between the plates
is modulated a charge flow
(capacitive current) can be
measured. When an external
bias potential just
compensates the work
function no current flows
anymore

d=d cos t0

I

Vcomp

I = dQ

dt
= dC

dt

(
Vcontact − Vcomp

)
, (9.11)

since Vcontact is constant and Vcomp varies slowly compared to the modulation voltage.
Therefore, a capacitive current is only induced by a change in the capacitance of the
plate capacitor (C = ε0A/d). Themeasured current has linear behavior as function of
Vcontact − Vcomp. The current will vanish if Vcontact or equivalently the work function
difference is compensated by the compensation voltage, i.e. if

Vcomp = Vcontact = 1

e
�Φ. (9.12)

No current flows if this condition is fulfilled and also the electric field between the
metals vanishes as shown in Fig. 9.3c. The amplitude of the (capacitive) current
can be measured sensitively using the lock-in detection method as a function of
the compensation voltage. Using this method, the (macroscopic) contact potential
difference between two metals can be measured.

9.6 Kelvin Probe Scanning Force Microscopy (KPFM)

While Kelvin probe scanning force microscopy [2] is the microscopic variant of the
Kelvinmethod, there are also somedifferences. In themacroscopicKelvinmethod the
distance between the two metals is modulated and the resulting capacitive current is
measured, whereas in Kelvin probe scanning force microscopy the voltage between
tip and sample is modulated and the corresponding electric (capacitive) force is
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measured.7 For conceptual simplicity we consider a flat surface and the tip is moved
at a constant topographic distance over this surface. However, we consider that the
surface consists of areas with different work functions which wewould like to detect.
Our configuration consists of a surface and a tip with a voltage V between them, and
a capacitance C(z) for the tip-sample system. Apart from other forces, there is an
electrical force between the tip and the sample. If we consider the tip-sample system
as a capacitor, the electrical (capacitive) force between tip and sample is the gradient
of the potential energy of the capacitor as

Fel(z, V ) = −∂E

∂z
= −1

2

∂C

∂z
V 2(t). (9.13)

Since we assume a scan at constant tip-sample distance, ∂C/∂z is a constant. The
voltage between tip and sample consists of different contributions: the constant con-
tribution Vcontact − Vcomp, and additionally a voltage component which is modulated
at the modulation frequency ωmod resulting in a total voltage between tip and sample
as

V (t) = Vcontact − Vcomp + Vmod cos (ωmodt) (9.14)

Thus, the tip-sample force which is proportional to the square of the tip-sample
voltage V (t) results as

Fel(V ) = −1

2

∂C

∂z

[
Vcontact − Vcomp + Vmod cos (ωmodt)

]2

= −1

2

∂C

∂z

[(
Vcontact − Vcomp

)2 + 2
(
Vcontact − Vcomp

)
Vmod cos (ωmodt)

+V 2
mod cos

2 (ωmodt)
]
. (9.15)

The first term in the square bracket is time independent (constant), the second term
is a modulation with the frequency ωmod, while the third term consists (after using a
mathematical identity) of a constant term plus a component at twice the frequency
ωmod. Using the lock-in technique, which we introduced in Chap.6, the amplitude
of the term at the frequency ωmod can be selectively measured. This component
vanishes if Vcontact − Vcomp = 0. In the practical implementation, a feedback control
of Vcomp keeps the ωmod component of the force at zero. Thus, by recording the
voltage Vcomp, which nulls the ωmod component of the force signal ∝ 1

e�Φ − Vcomp,
the work function difference is measured locally on the nanoscale while scanning
over the surface. Due to themodulation of the voltage V , a modulated force is exerted
on the cantilever, which induces a cantilever oscillation at the modulation frequency.

So far we have left out the complication that in a practical implementation of
an SPM setup the tip-sample distance also has to be measured, and to adapt the
setpoint value. In dynamic atomic forcemicroscopy this can be done using a (second)
modulation of the cantilever close to its resonance frequency (as we discuss in detail

7This is done since the force (not the current) is measured in a AFM setup.
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in Chap.13). Thus, the cantilever is modulated at two (different) frequencies and two
lock-in detection units detect the oscillation amplitudes at the respective modulation
frequency.

9.7 Summary

• The definition of the work function as the difference between the vacuum level
and the Fermi level, includes also a surface contribution to the work function.

• Due to a “spill out” of charge to the vacuum, a charge dipole occurs at the surface.
A certain amount of work has to be done to move an electron through this dipole
layer. This is the surface contribution to the work function.

• Also a net charge can accumulate at the surface giving rise to a contact potential
between metals with different work functions. The contact potential is the differ-
ence between the work functions.

• The contact potential can be measured using the Kelvin method by modulating the
distance between the surfaces of the metals and measuring the induced capacitive
current.

• In Kelvin probe scanning force microscopy (KFM) the work function can be
measured locally by modulating the tip-sample voltage.
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Chapter 10
Forces Between Tip and Sample

The idea behind the atomic force microscope (AFM) is to measure the force between
the surface and the scanning tip in order to track the surface topography. Before we
describe the atomic force microscopy technique in detail, we consider the forces
acting between tip and sample as well as the tip-sample contact mechanics. We
consider also the snap-to-contact phenomenon, which can occur due to attractive
tip-sample forces.

10.1 Tip-Sample Forces

The total force between tip and sample is composed of several long-range and short-
range contributions, which we will discuss in the following. One long-range contri-
bution is the van der Waals force. The van der Waals force in the narrower sense,
here specifically the London dispersion force, is a force between neutral atoms or
molecules without a permanent dipole moment. It can be described as a spontaneous
formation of fluctuating electric dipoles which attract each other. The origin of the
van der Waals force is of quantum mechanical nature. There are several levels of
approximation for this force, at the most exact level it is a quantum-electrodynamical
phenomenon which is called the Casimir–Polder force [1].

For the simple case of two noble gas atoms (distance r ) the dipole interaction
between them can be treated analytically using some approximations [2], resulting
in an interaction potential of

UvdW(r) = −C

r6
. (10.1)

The distance dependence with the minus sixth power corresponds to a long-range
interaction. The van der Waals interaction is (in this approximation) non-directional
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(isotropic) and additive,whichmeans that for twogroups of atoms the total interaction
energy is the sum of all pair potentials. Taking a sample and an AFM tip as an
example, not only the atoms in the vicinity of the tip apex contribute to the van der
Waals force, but also the forces of atoms in a larger volume of the tip and sample
have to be summed up, because of the long range of the force. The total interaction
can be obtained by integration. The van der Waals interaction energy between an
infinitesimal volume element of the tip dVtip and an infinitesimal volume element
dVsample of the sample can be written as

dUvdW = − Cρtipρsample
∣
∣rtip − rsample

∣
∣
6 dVtipdVsample, (10.2)

with ρtip and ρsample being the atom densities of tip and sample, respectively. Approxi-
mating the tip by a sphere of radius Rtip and the sample by a semi-infinite solid results
in a van der Waals interaction energy [2] of

UvdW = −HRtip

6d
, (10.3)

where Rtip is the tip radius, d the tip-sample distance measured from the tip apex, and
H is theHamaker constant. TheHamaker constant is amaterial property representing
the strength of the vanderWaals interaction [2, 3]. It is defined as H = π2Cρtipρsample,
with C being the coefficient in the atom-atom pair potential in (10.1). Typical values
for the Hamaker constant are in the range of several eV. The van der Waals force
between the tip and sample results as

FvdW = −∂UvdW

∂d
= −HRtip

6d2
. (10.4)

For tip-sample distances larger than 1nm the van der Waals force is the largest force.
Apart from the van der Waals force, short-range forces arise from the overlap of the
electron wave functions of the outermost shell (chemical bond). These short-range
forces have a range of less than a nanometer and can be attractive or repulsive. If
the overlap of the electron wave functions of the outer shell reduces the total energy,
these chemical bond forces are attractive. We shall not elaborate on the nature of
chemical bonds further here, as this topic is treated in detail in textbooks on chemistry
and physics.

If we consider a metal tip and a metal surface, an attractive interaction (some
kind of metallic bonding) can be expected if tip and sample approach closely. One
effect which does not actually occur is that the nuclei repel each other, as they
are well shielded by the inner electron shells. When the tip and the sample atoms
approach each other at distances closer than those in a chemical bond, the repulsion
between the inner electron shells becomes important. The repulsive interaction due
to the overlap of inner closed shell orbitals is not just the electrostatic repulsion of
the electrons of the closed shells. There is also a quantum mechanical component
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called Pauli repulsion. In a simple form, the Pauli exclusion principle states that
no two electrons can occupy the same state. In the overlapping region between the
atoms the states of each atom are not only occupied by “their own electrons” but also
partially by electrons of the other atom. Since the low-lying states are all filled (closed
shell) these additional electrons from the other atom have to deviate to higher-lying
states, leading effectively to a repulsive interaction if the electron wave functions of
two neutral atoms with closed shells intrude into each other. The Pauli repulsion is
introduced here in simple terms but in a more complete treatment the general form
of the Pauli exclusion principle has to be applied. The multi electron wave function
must be anti-symmetric under the exchange of two electrons.

All these short-range interactions are included in a quantum mechanical treat-
ment by the Schrödinger equation. However, the (exact) solution of the Schrödinger
equation of a system with several electrons is very difficult except for very simple
cases. Therefore, model potentials are often used for the qualitative discussion of
tip-sample interactions.

A frequently used model potential is the Lennard-Jones potential. This potential
describes the interaction between two neutral atoms and consists of a term describing
the attractive part of the interaction (van der Waals interaction) and a part describing
the repulsive interactions, assumed to be proportional to 1/r12, as

ULJ(r) = 4U0

[(
Ra

r

)12

−
(
Ra

r

)6
]

, (10.5)

where U0 is the depth of the potential well, r is the distance between the atoms,
and Ra is the distance at which ULJ(r) is zero. In Fig. 10.1a the Lennard-Jones
potential is shown as a red line, as well as the two contributions, the attractive−1/r6

contribution (green) and the repulsive 1/r12 contribution (blue). While the Lennard-
Jones potential is intended to model the interaction between neutral atoms, it also
captures the basic features of the tip-sample interaction: attractive interaction for
large distances, a potential minimum, and a strong repulsive interaction at short
distances. Therefore, we will often use this model potential to describe tip-sample
interactions. The Lennard-Jones potential and the corresponding force F = − ∂U

∂r as
well as the force gradient (which will be important in the dynamic mode of AFM) are
shown in Fig. 10.1. The shape of the curves is roughly similar, but shifted to the right,
as the zero of the potential gradient (force) is at the minimum of the potential, and
the zero of the force gradient is at the minimum of the force. The boundary between
the attractive regime (negative force) and the repulsive regime (positive force) is
indicated as a dashed line in Fig. 10.1 and occurs where the force changes its sign,
or correspondingly at the minimum of the potential. If we use the Lennard-Jones
potential in the following as tip-sample model potential, we replace r in (10.5) by
the tip-sample distance d.
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Fig. 10.1 a The
Lennard-Jones potential will
be used in the following as a
model potential for a
tip-sample interaction. The
green and the blue lines
show the attractive and the
repulsive parts of the
potential, respectively. The
corresponding force is shown
in b and the (negative) force
gradient in c. The border
between attractive and
repulsive forces
(interactions) is indicated by
the vertical dashed line
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10.2 Tip-Sample Contact Mechanics

If the tip and sample come into contact, not only the corresponding wave functions
intrude into each other (as considered using the Lennard-Jones potential), but the
positions of the atoms inside the solid change due to the elasticity of the tip and
samplematerials. This effect is described by the Hertzian theory of the elastic contact
between two bodies [4]. The Hertzian theory was formulated for two elastic spheres
coming into contact. If the radius of one sphere approaches infinity the situation of
a spherical tip coming into contact with a sample surface is described as shown in
Fig. 10.2.

The Hertzian theory predicts the elastic force which develops in response to an
indentation described by the or tip-sample distance d as



10.2 Tip-Sample Contact Mechanics 165

Fig. 10.2 Geometry of a
contact between a sphere
(tip) and a flat surface
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Fig. 10.3 Tip-sample force
as function of the indentation
according to the Hertzian
theory. The curves are for
samples of diamond Si, and a
soft polymer sample. The
following parameters were
used: a0 = 0.3 nm, ν = 0.3,
Rtip = 30 nm
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FHertz(d) = −Fext(d) = 4

3
E∗√Rtip(a0 − d)3/2 for d < a0, (10.6)

with the tip radius Rtip and the effective elastic modulus E∗

1

E∗ = 1 − ν2
tip

Etip
+ 1 − ν2

sample

Esample
. (10.7)

The constants E and ν are the Young’s modulus and the Poisson’s ratio, respectively.
The offset distance a0 is used in order to bring the continuumapproach of theHertzian
theory in accord with tip-sample distances d on the atomic scale. The distance a0
corresponds to a typical inter-atomic distance and thus a contact is just established at
the tip-sample distance d = a0. For tip-sample distances d < a0 (including negative
values for d) a contact is formed. For distances d > a0 no elastic contact is present
and thus the force FHertz(d) vanishes.

The force-distance dependence according to (10.6) is shown in Fig. 10.3 for three
different surfaces: twohard samples (diamond and silicon)with Ediamond = 1000GPa
and ESi = 130GPa, as well as a soft polymer sample (assumed as completely elastic)
with Epoly = 1.3GPa. If the elastic modulus of the sample material (e.g. polymer) is
much smaller than the elastic modulus of the tip material (e.g. silicon), this results
in a less steep repulsive distance dependence.
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The modeling of the tip-sample contact can be extended beyond the Hertzian
theory by including attractive forces. In the DMT model (Derjaguin, Muller, and
Toporov) a van derWaals type long range attractive force acting outside of the contact
area between a spherical tip and the sample is added to the Hertzian force [5–9] as

FDMT(d) = FHertz(d) + FvdW(a0) = −Fext(d) for d < a0, (10.8)

i.e., if the contact is established (d < a0) a constant adhesion force of FDMT(a0) =
FvdW(a0) = −HRtip/(6a20) according to (10.4) is added to the Hertzian force, while
only FvdW(d) is assumed for d ≥ a0. This gives rise to a DMT tip-sample force of

FDMT(d) =

⎧

⎪⎨

⎪⎩

FvdW = −HRtip

6d2 . for d ≥ a0

4
3 E

∗√Rtip(a0 − d)3/2 − HRtip

6a20
for d < a0.

(10.9)

The Derjaguin approximation relates the force law, F(d), between two curved
surfaces to the interaction free energy per unit area, W(d), between two planar sur-
faces. This makes this approximation a very useful tool, since it is easier to derive
the interaction energy for two planar surfaces rather than for curved surfaces.

If the attractive force between tip and sample is due to a van der Waals type force
(i.e. no chemical bonding), the Derjaguin approximation [10] can be used to relate
this adhesive force between a sphere and a plane to the surface energies per area γ
as

FvdW(a0) = −HRtip

6a20
= 2πRtip(γtip + γsample − γtip−sample) = 2πRtip�γ. (10.10)
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Fig. 10.4 DMT force FDMT(d) as function of the indentation d according to (10.9). The two curves
are for a hard Si sample and a soft polymer sample
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Fig. 10.5 JKR contact for the situations in which a the contact is just established and d < a0 due
to the adhesion force in the contact area, b an external applied force pushing the tip deeper into the
sample, and c for an external force of opposite direction. In this case a tip-sample force for d > a0
develops due to the adhesive tip-sample contact. d shows a plot of the hysteretic behavior of the
external applied force as function of the tip-sample distance

TheDMT force according to (10.9) and (10.10) is plotted in Fig. 10.4 for the two cases
of a silicon sample (�γ = 0.1J/m2 assumed) and a soft polystyrene sample with the
parameters used in Fig. 10.3 and an assumed surface energy of �γ = 0.05J/m2.

The limit in which the DMT theory is valid are hard materials with low surfaces
energies and small tip radii [11] and a constant adhesion force independent of the
indentation depth is assumed.

While the DMT theory considers long range attractive van der Waals-type tip-
sample forces, the model of Johnson, Kendall, and Roberts (JKR model) [12] con-
siders the opposite limit of a short range adhesive force acting in the contact area.
The short range adhesive force is modeled by a delta function of a certain strength.
Opposite to the case of the DMT force the JKR attractive force acts only inside the
contact area. As can be seen in Fig. 10.5 the JKR contact is of hysteric nature. When
the contact is established at d = a0 the attractive adhesion force pulls the tip towards
the sample d < a0 (Fig. 10.5a) until an equilibrium with the repulsive elastic force
is established. With an external applied force the tip indents further into the sample
(Fig. 10.5b). If the tip is retracted by an externally applied force of opposite direction,
a bridge remains for d > a0, until a maximum (separation) force is reached, beyond
which tip suddenly breaks free from the sample. This whole hysteretic process is also
shown in a qualitative plot of the external applied force as function of the tip-sample
distance d, with the situations shown in (a)–(c) indicated. The equations describing
the JKR model can be found in the following references [3, 12–14]. The JKR model
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describes best contacts of soft materials with high surface energies and tips with
large radii [11, 14].

The DMT and the JKR models describe the limiting cases of long range forces
acting solely outside of the contact area, and forces acting inside the contact area,
respectively. A model covering the intermediate regime was developed by Maugis
using the Dugdale approximation (MDmodel) [9, 15]. In this model a square shaped
model force for the tip-sample force is assumed having a certain width and force
magnitude, i.e. the adhesion force remains constant up to a certain tip-sample distance
and vanishes beyond that distance within the MD model. The JKR case can be
modeled by a very narrow and deep force (close to a delta function), while the DMT
force can be approximated by a square shaped force with the range of the van der
Waals force and a depth corresponding to an average attractive force. Additionally,
any intermediate square force shapes can be considered. TheMaugis Dugdale model
(MD model) is considered in detail in the following references [3, 9, 14].

10.3 Capillary Tip-Sample Forces

Capillary forces are an important issue when performing atomic force microscopy
in air. It is known that under ambient conditions a thin water film can exist on the
sample and the tip [16]. The thickness of this water layer depends on the relative
humidity and can range from below 1nm to several nanometers [16]. When tip and
sample come so close that both water layers touch, a meniscus forms between tip
and sample, as shown in Fig. 10.6 for the case of a hydrophilic tip and sample. This
capillary force is of hysteretic nature. When the tip and sample approach, there is
initially no water meniscus present. If the water films of tip and sample touch, a
meniscus forms between tip and sample, as shown in Fig. 10.6b. If the tip-sample
gap is increased subsequently, (Fig. 10.6c) the meniscus breaks at a much larger
tip-sample distance than it formed. This gives rise to the hysteretic nature of the
capillary force. The capillary force is an attractive tip-sample force: If tip and sample
separate, the surface area of the meniscus increases. This corresponds to a higher
surface energy and thus to an attractive tip-sample force.

(a) (c)(b)

Fig. 10.6 a At ambient conditions tip and sample are covered by a thin water layer. b If tip and
sample touch, the tip-sample gap fills with water, either due to the water films on both or due to
capillary condensation c The water meniscus between tip and sample remains also if tip and sample
disengage, leading to the hysteretic nature of the capillary force
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In contact mode AFM the capillary force is an additional attractive force on the
order of several nN. This attractive force component modifies the force-distance
curves, discussed in Sect. 12.5. Capillary forces modify also the dynamic behavior
of the cantilever oscillation, as discussed in [17].

Additionally to the presence of a thin water layer on tip and sample, a liquid
meniscus can also form due to capillary condensation at the tip sample contact [18].
Capillary condensation is an effectwhere in a small confined volumewater condenses
at a lower vapor pressure than in a large volume. The gap between the tip and the
sample acts as a small confined volume (like a capillary) inwhichwater can condense
at ambient conditions.

There are models which calculate the capillary force [16–18]. However, since
most of the involved parameters (tip radius, tip shape, thickness and composition of
the liquid contamination layer, surface energy of the liquid layer and surface energies
and of tip and sample) are unknown, a reliable calculation of the capillary forces is
difficult. Moreover in the dynamic mode the time dependence of the formation of
the meniscus adds another complexity.

10.4 Electrostatic Tip-Sample Force

A further kind of tip-sample interaction is the electrostatic interaction, which is quite
long-range. It appears if there are static electric charges trapped on the tip or sample,
or if the tip and sample are conductive and are at different potentials. When we
consider the tip-sample system as a capacitor with distance dependent capacitance
C(z), the energy change of a capacitor induced by a voltage difference of �V is
given by Eel(z,�V ) = −1/2C(z)�V 2. The electrostatic force is then given by

Fel(z,�V ) = −∂Eel(z)

∂z
= 1

2

∂C(z)

∂z
�V 2. (10.11)

Using this equation, we will evaluate the approximate size of the electrostatic tip-
sample force. If we model the capacity between tip and sample by a plate capacitor
(plate area A) with capacitance

Cplate(z) = ε0εr
A

z
, (10.12)

the 1/z tip-sample distance dependence of the capacity results in a force proportional
to 1/z2. If the tip is modeled more realistically by a sphere on a cone [19], and the
sample by a semi-infinite conductive solid, the electrostatic force between tip and
sample results as

Fel ≈ −πε0εr
Rtip

z
�V 2. (10.13)
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For a tip radius Rtip = 50nm, a tip-sample distance of z = 1nm, and a voltage of
V = 1V a force of about Fel ≈ 1nN results. This value is similar to short-range
forces occurring between individual atoms. The force can be even larger, since due
to the long-range of the electrostatic force also the interactions between the sample
and more distant parts of the cantilever might be important.

While the electrostatic force can have considerable values, it vanishes according
to (10.11) if �V = 0. The potential difference �V is determined by two aspects,
the bias voltage applied between tip and sample Vbias as well as the difference of the
work functions between tip and sample (local contact potential difference) as �V =
Vbias − �Φ/e, as we have seen in Chap.9. Due to the work function difference, zero
bias voltage does not correspond to a vanishing electrostatic force. The force as a
function of the applied bias voltage is, according to (10.13), a (negative) parabola
(Kelvin parabola). If tip and sample are both conducting, measuring the tip-sample
force as a function of the applied bias voltage, can be used in order to determine the
work function between tip and sample as the voltage at which the maximum of the
parabola is reached.As long-range electrostatic forces are undesirable in atomic force
microscopy the bias voltage is chosen for which �V and therefore the electrostatic
force vanishes.

The models for the tip-sample interaction discussed above are frequently used
for the interpretation of AFM force-distance curves (see Sect. 12.5). In the following
text we will however use the Lennard-Jones potential as a model potential, because
of its simple analytic form.

10.5 Snap-to-Contact

For a soft cantilever, atomic forcemicroscopy is accompanied by the so-called “snap-
to-contact”. To introduce this effect let us discuss a macroscopic example. In the
case of a magnet attached to a spring, the magnet will have a stable position in the
gravitational field of the earth. If you bring the magnet close to an iron containing
plate, the attractive magnetic force will stretch the spring further. The system goes to
a new equilibrium position; an equilibrium position can be verified by exciting small
oscillations of the magnet around its equilibrium position. However, if the magnet
is brought too close to the iron plate, the magnet will snap onto the metal plate.
The spring can no longer keep the magnet in a stable position. This snap-to-contact
effect in which the system changes its state instantaneously is also observed in AFM.
Control over the position of the tip is lost so that certain tip-sample positions cannot
be realized.

Now that you have some idea of what snap-to-contact means, we will analyze the
stability of a (cantilever) spring system if an outer (tip-sample) potential is added.
The total potential energy of the cantilever system consists of two contributions, as
shown in Fig. 10.7: (a) The potential between tip and sample Uts, which we model
here as a Lennard-Jones potential (with the parametersU0 and za corresponding to the
depth of the potential and the distance for which the potential is zero, respectively),
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Fig. 10.7 Graphic
representation of the two
potentials acting on the
cantilever: the tip-sample
potential modeled by a
Lennard-Jones potential and
the parabolic potential
arising due to the cantilever
spring constant
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and (b) the parabolic potential Ucant arising due to the spring constant k of the AFM
cantilever.1

The total potential energy of the cantilever-tip-sample system can be written as
the sum of both contributions

Utot(z) = Uts(z) +Ucant(z) = 4U0

[(
za
z

)12

−
(
za
z

)6
]

+ 1

2
k (z − z0)

2 . (10.14)

The variable z is the distance between the origin of the Lennard-Jones tip-sample
potential (i.e. sample surface) and of the tip position. The parameter z0 is the distance
from the origin to the equilibrium position of the cantilever tip without any influence
from the tip-sample potential (tip-sample potential switched off). The distance z0
can be varied via the piezo element controlling the tip-sample distance, while the
actual tip-sample distance at which the potentials are evaluated is z. The bending of
the cantilever due to the tip-sample interaction force is z − z0.

Since the interactions are modeled by potentials, they are considered as conser-
vative interactions, i.e. without dissipative interactions. Generally the system “tries”
to minimize the total potential energy by realizing the tip-sample distance z, which
corresponds to the lowest Utot. If the tip is oscillating, the oscillation occurs around
this equilibrium position.

The lowest potential (globalminimum)may not be reached due to a barrier present
between the nearest local minimum and the global minimum of the total potential
of the system. A graphic representation of the total potential of the cantilever (sum
of the tip-sample potential and cantilever potential) is given in Fig. 10.8 for different
values of the parameter z0. If the cantilever tip is far from the surface (corresponding
to large values of z0), the spring potential provides a stable potential minimum at
z ≈ z0 (Fig. 10.8a, b). In fact, theminimum is at slightly smaller z values than z0 due to
the non-zero attractive interaction potential between tip and sample. If the cantilever
comes closer to the surface (smaller values of z0), the potential minimum close to z0

1We use here the coordinate z for the distance between the tip and sample instead of r previously
used for the Lennard-Jones potential between two atoms in (10.5).
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Fig. 10.8 Graphic
representation of the total
potential (tip-sample plus
cantilever spring potential
according to (10.14)) as a
function of the tip-sample
distance z. The potential is
shown for different values of
z0, decreasing from a to d, as
the tip approaches the
surface. The parameter z0 is
the equilibrium position of
the cantilever tip without any
influence from the tip-sample
potential. For large distances
of the tip from the surface,
the tip is in a stable potential
minimum close to z0 as
shown in a and b. As the tip
approaches the sample the
potential minimum close to
z0 converts to a saddle point
(c). Below a critical distance
between tip and sample the
tip snaps to a new minimum
close to the sample,
dominated by the tip-sample
interaction (d)
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Snap-to-contact

vanishes (converts to a saddle point) due to the increased interaction strength of the
tip-sample potential for smaller tip-sample distances (Fig. 10.8c). Correspondingly,
the cantilever tip will find a new stable minimum not close to z0 but closer to the
sample surface (Fig. 10.8d). This abrupt jump of the cantilever equilibrium position
to a position much closer to the surface is called snap-to-contact.

In the contactmode ofAFM, themeasurements are performedwith the tip snapped
into contact, i.e. in a regime in which the repulsive tip-sample interaction prevents
any further approach toward the surface. In dynamic AFM measurements (with an
oscillating cantilever) snap-to-contact would stop the oscillation due to the very
narrow potential minimum close to the surface. Thus, in the dynamic mode the snap-
to-contact has to be prevented and in the following we will analyze the conditions
under which the snap-to-contact can be prevented.
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We will determine at which tip-sample distance(s) z the total potentialUtot(z) has
minima (for a given value of the parameter z0). Specifically it is important to know
under which conditions a minimum vanishes.2 A necessary condition for a minimum
of Utot(z) is that the first derivative of the potential with respect to z has to be zero
( ∂Utot

∂z = 0), which means that

∂Uts

∂z
+ k(z − z0) = 0. (10.15)

Since − ∂Uts
∂z = Fts, the above condition is actually a condition of force balance

Fts(z) = −Fcant(z, z0). (10.16)

This balance of forces is graphically represented in Fig. 10.9, with the force due
to the cantilever bending Fcant represented by straight lines (Hooke’s law: Fcant =
−k(z − z0)) for different positions of the free cantilever zero point z0. The slope
of the cantilever force lines corresponds to the spring constant k. In this graph, a
force equilibrium (Fts(z) = −Fcant(z)) occurs if the red line corresponding to the
Lennard-Jones force crosses one of the straight lines representing the (negative)
cantilever spring force. It can be seen from Fig. 10.9 that for each position of z0 one
(or more) distances z can be found for which the force balance (10.16) holds.

The force equilibrium (the first derivative of the potential vanishes) identifies only
the critical points (minima, maxima, and saddle points). The second (sufficient) con-
dition for stability of the cantilever (potential minimum) is that the second derivative
of the total potential with respect to z has to be larger than zero ( ∂2Utot

∂z2 > 0, positive
curvature). This second condition can be written as

∂2Uts

∂z2
+ k > 0. (10.17)

Since Fts = − ∂Uts
∂z , this condition can be expressed in terms of the force gradient as

k >
∂Fts

∂z
. (10.18)

If tip and sample are still far from each other, the minimum of the potential is at
a cantilever position z close to z0 (Fig. 10.8) and the condition (10.18) is fulfilled
at the position of force equilibrium, since the force gradient is very small for large
z. If the tip and sample approach each other, this condition of stability holds (at
the position of equilibrium) until the force gradient becomes larger than the spring
constant (which is the negative gradient of the cantilever force k = − ∂Fcant

∂z ). If (10.18)
is no longer fulfilled, the potentialminimumvanishes, and the spring systembecomes

2In our analysis we treat the spring constant k and the parameters of the Lennard-Jones potential
(U0 and za) as constants.
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Fig. 10.9 Comparison of the tip-sample force (approximated by a Lennard-Jones type force) to the
negative cantilever spring force (straight lines for different z0, i.e. for different externally set tip-
sample distances). If the two forces are the same (point(s) of intersection), a minimum, maximum
or saddle point is present in the potential curve (compare Fig. 10.8). The cantilever spring constant k
corresponds to the slope of the straight lines. When tip and sample approach each other (decreasing
z0), the gradient of the tip-sample force (slope of the red curve) exceeds k (slope of the blue lines)
and a transition from stability (potential minimum) to instability occurs (point c). The tip jumps
from (point c) to the stable minimum at point d (snap-to-contact). Correspondingly, snap-out-of-
contact occurs at point f where the slope of the Lennard-Jones potential becomes larger than the
slope k of the cantilever spring force

instable and snaps to contact (Fig. 10.8c). In the graphic representation in Fig. 10.9
this stability condition holds, if the slope of the tip-sample force Fts (red curve in
Fig. 10.9) is smaller than the slope (gradient) of the cantilever force (straight blue
lines in Fig. 10.9).

After considering the equations governing snap-to-contact, we will now follow
the snap-to-contact effect step by step using Figs. 10.8 and 10.9. For large values of z0
the tip-sample force can be neglected at the point of equilibrium, which is very close
to z0 (point a in Figs. 10.8a and 10.9). When the cantilever approaches the surface
(line B in Fig. 10.9), the cantilever spring force compensates the tip-sample force at
the three intersection points b, g, and e in Fig. 10.9. The points b and e correspond to
the twominima indicated in Fig. 10.8bwhile g corresponds to the potential maximum
in between. Since the tip started in the right potential minimum it will stay there,
even if the minimum close to the surface becomes lower, as there is a potential barrier
in between. However, if the tip moves further towards the surface, minimum b and
maximum g approach each other and eventually form the saddle point c (line C
in Fig. 10.9, compare also Fig. 10.8c). Now the position of the cantilever becomes
instable and the cantilever moves to the other minimum d closer to the surface. This
is the snap-to-contact. A further shift of the zero position of the tip z0 towards the
surface will change the position of the minimum only slightly due to the large slope
of the tip-sample potential. The intersection with line D occurs almost at the same
z-position as the intersection with line C in Fig. 10.9.
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When the tip is subsequently retracted from the sample, it remains in the poten-
tial minimum close to the surface even when the other potential minimum is
re-established (point b in Fig. 10.8b). Finally, minimum e and maximum g develop
into a saddle point f and the tip snaps out of contact into the minimum at point
a (line A in Fig. 10.9, compare also Fig. 10.8a). This instantaneous jump is called
snap-out-of-contact.

Since the snap-to-contact effect is undesirable in dynamic atomic force
microscopy, we will now discuss the conditions under which it can be prevented.
One strategy is to avoid the snap-to-contact effect by using cantilevers with a large
spring constant. If k is larger than the maximal value of the gradient (slope) of the
tip-sample force, (10.18) is always fulfilled, i.e. for any value of z0. This corresponds
in Fig. 10.9 to the orange line which has a larger slope than the maximum of the slope
of the tip-sample force and thus snap-to-contact is avoided.

Apart from using cantilevers with a high force constant there is another exper-
imental condition under which snap-to-contact can be avoided. This condition can
be realized if the cantilever is oscillated around its equilibrium position, i.e. in the
dynamicmodeofAFMoperation. First, the equilibrium tip-sample distance z0 should
be large, which corresponds for instance to the green curve in Fig. 10.9. As a second
condition, the oscillation amplitude should be large in order to reach the region very
close to the sample (where the tip-sample interaction is different from zero) at least
at the turnaround point of the oscillation closest to the sample. The green line will
never cross the red line in Fig. 10.9 (apart from a point very close to z0). Due to the
large deflections for tip positions close to the surface, the cantilever force is always
larger than the attractive tip-sample force and thus snap-to-contact is prevented. In
summary, the conditions of a large oscillation amplitude and simultaneously a large
z0 prevent snap-to-contact and maintain the condition of stability, also for the case
of small cantilever force constants k.

10.6 Summary

• The long-range attractive van der Waals force and the short-range forces, such
as chemical bonding forces and the Pauli repulsion, contribute to the tip-sample
interaction.

• In order to represent the different forces in a simple analytic form the Lennard-
Jones potential is used as a model potential comprising an attractive part∝ −1/r6

and a repulsive part ∝ 1/r12.
• The Hertz model describes the elastic interaction of the tip with the sample. Addi-
tional attractive (van der Waals or adhesion) forces are considered in the JKR,
DMT, and MD models.

• The electrostatic forces and capillary forces are other important tip-sample forces.
• If the cantilever tip is brought towards the sample an instability can occur if the
force gradient of the tip-sample interaction becomes larger than the spring constant
of the cantilever ∂Fts

∂z > k. In this case snap-to-contact occurs and the tip jumps
toward the surface.



176 10 Forces Between Tip and Sample

• Snap-to-contact can be prevented by (a) stiff cantilevers or (b) in the dynamic
mode by large oscillation amplitudes keeping the cantilever force larger than the
tip-sample force.
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Chapter 11
Cantilevers and Detection Methods
in Atomic Force Microscopy

We consider basic requirements for force sensors and introduce a fabrication process
for cantilevers. Subsequently, the most common detection method for measuring
the cantilever deflection, the beam deflection method, is discussed in detail. Other
detection methods are presented only briefly, before calibration measurements for
AFM are described. First the sensitivity factor has to be determined. This gives
the conversion from the measured sensor voltage (at the output of the deflection
measurement electronics) to the actual deflection of the cantilever tip in nanometers.
Subsequently, several methods for the determination of the spring constant of the
cantilever are discussed.

11.1 Requirements for Force Sensors

When we discuss the requirements for force sensors, the first question is: How strong
are the forces we would like to measure? The forces between atoms in solids can
be used as a first estimate for the expected tip-sample forces. Typical vibration
frequencies of atoms in a solid are ωvib = 1013 Hz and typical atom masses are of
the order of m = 10−25 kg. Considering the vibrations of the atoms in the model of
a harmonic oscillator the well-known relation

ωvib =
√

k

m
(11.1)

can be applied. Thus, the spring constant for the bonds of atoms in a solid results as

k = ω2
vibm ≈ 10N/m (11.2)
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With this force constant of 10N/m and distances between the atoms in the ångström
range (10−10 m) forces between atoms in the nanonewton regime can be expected
following Hooke’s law. Another crude way to estimate the forces on the atomic scale
is to divide typical bond energies of the order of electron volt by distances of the
order of ångströms, resulting in forces between atoms of the order of nanonewtons
as well. This sets a limit for the maximum force which should be exerted by the tip
on the surface atoms. Much larger forces than nanonewtons can lead to the breaking
of the bonds of the surface atoms, which leads to undesired damage to the surface
structure, which should be measured nondestructively.

If a cantilever with a spring constant of 1N/m is used to measure forces in the
nanonewton regime, the bending of the cantilever due to a nN force will be in the
nanometer regime, which is still detectable as we will see later. For a given detection
limit of the cantilever deflection measurement �z a desirable high force sensitivity
�F calls, due to Hook’s law, for a small force constant in static AFM as�F = k�z.
Thus, for a high force sensitivity and in order to avoid too high tip-sample forces,
cantilevers with a small force constant should be used. In summary, a first condition
for a cantilever in static atomic force microscopy is that it should have a small spring
constant.

A second requirement for the cantilever is that it should have a high resonance
frequency, preferably �10kHz. This condition results from the need to realize a
high scan speed. If the surface topography is scanned, at every new image pixel the
cantilever tip should move to a new height corresponding to the surface topography
at this position. When analyzing the harmonic oscillator in Chap. 2 we have seen
that the harmonic oscillator can only follow an external motion with gain one and
without a phase shift, if the excitation frequency is (much) smaller than the resonance
frequency of the harmonic oscillator. When scanning with a pixel frequency of 1 or
10kHz, the cantilever can be excited with Fourier components up to this frequency.
Thus, in order to follow the surface topography that fast, the cantilever (considered as
a harmonic oscillator) should have a high resonance frequency, preferably�10kHz.

While the above stated requirements for the cantilever were obtained for the static
mode the same requirements also apply for the case of the dynamic AFM mode. As
we will see in Chap.13, the measured signal in the dynamic mode is proportional to
ω0/k. Thus, in order to obtain a large signal, a high resonance frequency and a small
force constant are required as well.

Another argument for a high resonance frequency of the cantilever arises from the
requirement of immunity to external vibrations for an atomic force microscope. We
have seen in Sect. 3.6 that a high resonance frequency of the microscope construction
is the key to immunity to external vibrations. Since the cantilever is part of the
mechanical structure of the microscope also its resonance frequencies should be as
high as possible, preferably �10kHz.

Altogether we have two requirements for an AFM cantilever: high resonance
frequency and small spring constant. Considering the basic equation for a harmonic
oscillator

ωcant =
√

k

m
, (11.3)
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the two requirements are in opposition: A small spring constant k leads to a small
resonance frequency and, vice versa, a high resonance frequency leads to a high spring
constant. However, both requirements can be fulfilled if the mass of the cantilever is
small.We see from (11.3) that for a frequency ofωcant = 100kHz and a force constant
of k = 10N/m, a cantilever mass of 1µg results. Therefore, small cantileversmust be
used in order to have simultaneously small spring constants (for high force sensitivity)
and high resonance frequencies of the cantilever (fast scanning and good stability
with respect to vibrations).

11.2 Fabrication of Cantilevers

Cantilevers are produced by semiconductor microfabrication processes using silicon
or silicon nitride as materials. Silicon nitride cantilevers consist of a thin silicon
nitride film deposited by chemical vapor deposition on a silicon wafer. Subsequently,
the silicon is etched away in a certain region in order to expose the cantilever. The
thickness of the film determines the thickness of the finished cantilever, which (for
silicon nitride cantilevers) usually has a triangular shape. The triangular form of
the cantilevers was chosen to prevent torsional motion due to frictional forces in
contact mode AFM. Silicon nitride cantilevers have a small spring constant and are
often used in contact mode atomic force microscopy. Coating the back side of the
cantilevers with gold or aluminum provides high reflectivity for the optical beam
deflection detection method.

The most frequently used cantilevers are silicon cantilevers. In the process
described in the following, all parts of the cantilever aremade of bulk silicon. The key
ingredient for the fabrication of these cantilevers is anisotropic wet etching, which
means that different crystal directions are etched at different rates using anisotropic
etchants like KOH. The (100) direction of Si is etched much faster than the (111)
direction. A simplified sketch of the fabrication process of a Si cantilever is shown
in Fig. 11.1. The starting point is a Si(100)-oriented wafer on which a structured
SiO2 layer is formed as shown in Fig. 11.1a. This structured SiO2 layer is formed
by standard lithography methods used in semiconductor microelectronics, defining
the cantilever shape and the tip position. A subsequent wet etching step leads to a
preferred etching in the (100) direction in those areas where no SiO2 layer is present,
while the SiO2 capped areas are not etched. Furthermore, at the edges of the SiO2

film Si(111) facets form due to the anisotropically very slow etching speed in this
direction, as shown in Fig. 11.1b. The formation of the tip is finished when the small
oxide pad on top of the tip is underetched completely. Subsequently, the top of the
wafer and on the bottom the handle part (cantilever base) are covered by Si3N4 in
order to protect the tip structure (Fig. 11.1c). A further wet etching step thins the back
of the cantilever beamdown to the desired thickness and separates it from the Siwafer
(Fig. 11.1d). Tip, cantilever and cantilever base are finished after removal of the pro-
tective silicon nitride film by a wet etching step (Fig. 11.1e). Electron microscopy
images of a finished cantilever of this type are shown in Fig. 11.2. As the cantilever
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Fig. 11.1 Fabrication of a Si
cantilever using alternating
lithographic patterning and
wet chemical etching as
described in the text
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beam itself is too small to handle, it is connected to a solid silicon base (cantilever
chip) with dimensions of several millimeters, seen partly in the left of the images in
Fig. 11.2.

The dimensions of the cantilevers can vary over large ranges, depend on the
application. Typical length are 100–400µm, typical width 20–80µm and typical
thicknesses 1–3µm. The resonance frequencies range from a few kHz to 300kHz.
The spring constants range from very low values as 0.01N/m for cantilevers used
in static mode to about 50N/m for cantilevers used in the dynamic mode. Recently,
there is a trend to enable fast scanning in the dynamic AFM mode by cantilevers
with higher frequencies beyond 1MHz, which have short length and high spring
constants.

At the tip apex, radii down to 10nm and below can be realized for Si cantilevers.
In order to realize even smaller apex radii, carbon nanotubes can be fixed to the end
of the tips. Another technique to produce sharp microtips on top of Si tips is electron
beam induced deposition. Here a carbon containing gas is injected into an electron
microscope chamber and an electron beam is focused onto the tip. As a result of this
concentrated bombardment with electrons, the gas decomposes at the tip and a sharp
carbon asperity, which can have very high aspect ratio, forms on the tip. A metal
containing carbonyl gas can also be used, which is decomposed by an electron beam.
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Fig. 11.2 Scanning electron microscopy images of a Si cantilever (length 450µm) with a Si tip
integrated at its end. A side view of the cantilever is shown in (a) and a tilted view in (b)

This can lead to the formation of a sharp metal whisker at the end of the tip [1].
Another technique to fabricate ultra-sharp AFM tips is sharpening using a focused
ion beam (FIB).

11.3 Beam Deflection Atomic Force Microscopy

Different kinds of atomic force microscopes are characterized by the different tech-
niques used to detect the bending of the cantilever. For most of all atomic force
microscopes the beam deflection method is used. The basic setup of the beam deflec-
tion method is shown in Fig. 11.3. A laser beam from a laser diode is focused on the
end of the back side of the cantilever where it is reflected into a photodiode.

Thebendingof the cantilever is detectedby a split photodiode, i.e. twophotodiodes
which are separated by a small slit. The difference in the optical signals of the two
parts of the split photodiode SA − SB is proportional to the angular deflection of
the laser beam and therefore proportional to the cantilever deflection (bending). The
absolute intensity detected by the photodiode can vary due to fluctuations of the laser
intensity and depends on the focusing of the laser beam onto the cantilever. In order
to be independent of the absolute intensity of the signal the normalized intensity
is used (SA − SB)/(SA + SB). The beam deflection method requires a mirror-like
surface at the back of the cantilever. Additionally, the width of the focused laser
beam on the cantilever must be wide enough to reflect the light without too much
diffraction. This is necessary since the diameter of the beamon the photodiode should
be smaller than the active diameter of the photodiode. In atomic force microscopy
setups with beam deflection detection, it is usually the sample that is scanned and not
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Fig. 11.3 Schematic of the beam deflection AFM method including the relevant dimensions nec-
essary to calculate the sensitivity. The bending of the cantilever end by the angle θ results in an
angle of 2θ for the reflected beam. The inset on the right shows the split photodiode (blue) and the
laser beam on the photodiode (magenta), assumed as a square for the sake of simplicity

the tip. This is done because when scanning the cantilever (without moving the laser
beam simultaneously) the laser spot would (in part) no longer focus on the cantilever.

11.3.1 Sensitivity of the Beam Deflection Method

In the following, the sensitivity of the optical beam deflectionmethod is analyzed, i.e.
the relation between the deflection of the cantilever �z and the output signal of the
photodetector electronics. Primarily the output signal of a photodiode is a current
I , which is converted to a (proportional) voltage at the output of the photodiode
preamplifier electronics using a transimpedance amplifier.

In the following, we will estimate the signal (current I ) in the photodiode. The
difference of electric currents of the photodiode segments A and B at the output of
the photodiode I is proportional to the optical signal SA − SB as I = R(SA − SB),
with R being the sensitivity (response) of the photodiode: output current divided by
input optical power in ampere per watt. We assume a total optical power of the laser
diode of S0 = SA + SB and estimate (following Fig. 11.3) how the reflected beam
moves on the photodiode for a certain deflection of the cantilever �z.

Analyzing the mechanics of the bending of beams it can be shown that the height
change �z and the deflection angle θ at the free end of the beam with length l are
related by [2]

θ = 3

2

�z

l
. (11.4)
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This angle is a factor 3/2 larger than that obtained for the rotation of a stiff beam.
The laser beam of diameter D0 is focused by a lens on the end of the back side of the
cantilever. The size of this focal spot d is considered to be smaller than the cantilever
width.

If we consider ray optics to determine the size of the laser spot on the photodiode
D, the intercept theorem states that the laser beam diameter at the lens D0, the focal
length of the lens focusing the laser beam L foc, and the length L (end of the cantilever
to photodiode) are related by

D = D0
L

L foc
. (11.5)

Following this, D can be made arbitrarily small using a large focal length. However,
there is a fundamental limit: D cannot be smaller than the diffraction limit. The
reflected beam is actually also a diffracted beam. The spot size of the diffracted/
reflected laser beam at the photodiode D is given by diffraction (λ = d sinα ≈
d · D/L) as

D ≈ λL

d
, (11.6)

where λ is the wavelength of the laser beam and d the focused beam size on the
cantilever.

In principle, the largest value for D has to be used, either limited by diffraction
or from the ray optics. However, since the diffraction limit is the more fundamental
limit, we will use (11.6) in the following for D.

For the sake of simplicity,we assume that the reflected laser spot on the photodiode
is uniformly irradiated over a square area of dimension D with an irradiation power
per area of Sarea. We also assume that the whole diffracted beam fits in the active
area of the photodiode. Then the total optical laser intensity S0 can be written as
S0 = SareaD2. If, more realistically, Gaussian beams are considered the numerical
factors in the results change slightly.

We will not go into the details of the operation of the photodiode and merely
assume that the signal current I of the photodiode is proportional to the difference
of the light intensities on both parts A and B of the split photodiode SA − SB . The
difference of the optical signals on both areas of the photodiode can be written
according to the inset in Fig. 11.3 and using �x = 2θL1 as

SA − SB = Sarea2�xD = S0
D2

4θLD. (11.7)

If we insert now θ and D according to (11.4) and (11.6), the difference of the
optical intensities at the photodiode results in

1The bending of the cantilever end by the angle θ results in an angle of 2θ for the reflected beam.
Thus, the linear deflection of the reflected laser beam on the photodiode results (for small angles)
as �x = 2θL .
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SA − SB = 6S0
�z

l

d

λ
. (11.8)

The output current of the photodiode as a function of deflection �z can be written
using I = R(SA − SB) as

I = 6RS0d

λl
�z. (11.9)

The ratio of �z and I is also called the detection sensitivity and is (due to the
diffraction) independent of the distance between the cantilever and the photodiode.
An additional factor arises if the voltage output of the preamplifier converting the
photodiode current to a voltage is considered.

11.3.2 Detection Limit of the Beam Deflection Method

Up to now we have analyzed the magnitude of the photocurrent I as a function of
the external conditions such as deflection of the tip, laser power, wavelength, and
the geometrical parameters of the setup. In the following, the detection limit for the
optical beamdetection, i.e. theminimumdetectable deflection�zmin of the cantilever,
will be analyzed. The fundamental source of noise in the beam deflection scheme is
shot noise, which arises due to the discrete arrival of the photons at the photodiode.
Correspondingly, the noise of the electric current in the photodiode is induced by
discrete number of electrons, each generated by a photon with a probability given by
the quantum efficiency (generated electrons per photon at the respectivewavelength).
Here we use the sensitivity of the photodiode R defined as I/S as an equivalent
quantity. If we consider the optical power SA irradiating segment A of the photodiode,
the corresponding generated current is IA = RSA.

In the following, we estimate the fundamental limit in the noise of the photo
current imposed by the discrete number of electrons (shot noise). An expression of
this shot noise can be derived if one considers an electrical current occurring due to
a discrete number of charges, n, flowing per time of measurement, �t . If we allow
for a long measurement time (averaging), say a second or so, the current will be
measured with low noise, but this also means that for instance the AFM feedback
can only run at this slow speed. Usually the speed of the measurement is expressed
by the bandwidth, which is roughly the maximum frequency at which a signal can
be detected properly, i.e. without too much loss of signal. If the duration of the
measurement of the current is one second, the bandwidth is about one Hertz. If the
measurement bandwidth is defined as B = 1/�t , the measured current generated by
segment A of the photo diode IA can be written as

IA = e n/�t = e B n. (11.10)
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If the current corresponds to n charges flowing by in the time �t , the number of
these charges will fluctuate on average by

√
n, leading to a current fluctuation of

�Ishot,A = e B
√
n = e B

√
IA
e B

= √
e B IA. (11.11)

In our simplified explanation, a numerical factor of
√
2 is missing. In a more rigorous

derivation [3] the following equation for the shot noise of segment A results

�Ishot,A = √
2 e IA B. (11.12)

As the noise components from the two segments of the photo diode are independent,
the combined current noise of the difference signal results as

�Ishot =
√

�I 2shot,A + �I 2shot,B = √
2 e(IA + IB)B = √

2 e R S0 B, (11.13)

as IA + IB = R (SA + SB) = R S0.
Identifying the photocurrent estimated above in (11.9) as signal S and the shot

noise from (11.13) as the corresponding noise N , the signal-to-noise ratio is given by

S

N
= I

�Ishot
= 6dS0R�zmin

lλ
√
2eS0RB

. (11.14)

The smallest detectable cantilever displacement results as

�zmin = lλ

6d

S

N

√
2eB

S0R
. (11.15)

Now we discuss the dependence of the smallest detectable cantilever displacement
�zmin on the different quantities involved. A laser beam with higher intensity S0
will improve the detection sensitivity towards smaller �zmin, however this will also
pump more energy into the system which can lead to thermal drift and is especially
undesirable in low temperature applications. With a larger measurement bandwidth
B, i.e. a shorter averaging time for the measurement, the smallest measurable deflec-
tion�z becomes larger. S/N is the signal-to-noise ratio at which a certain feature (for
instance an atomic protrusion) can be just identified. If a signal strength of one, two,
or three times the noise signal is required to distinguish a signal feature from noise,
the smallest detectable height of that feature�zmin will increase by one, two, or three
times. In this sense, the smallest detectable cantilever displacement is proportional
to the signal-to-noise ratio desired in order to resolve a feature. With a larger width
d of the reflected spot on the back of the cantilever, the diffraction becomes less pro-
nounced and therefore the sensitivity increases. However, the size of the deflected
beam is limited by the cantilever width. With a smaller wavelength of the laser beam,
the width of the diffracted beam becomes narrower and the sensitivity increases.
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For a measurement bandwidth of 1kHz, using a red light of λ = 0.7µm with
power S0 = 2mW, R = 0.4mA/mW and l/d = 10, at a signal-to-noise ratio S/N =
1, the detection limit �zmin of about 0.2pm results.2 This shows that the detection
limit is quite small. The simple beam deflection technique has a very high detection
sensitivity.

In Chap.17 we will also discuss other sources of noise in the measurement of the
cantilever defection, such as the amplitude of the cantilever due to thermal excitation.

11.4 Other Detection Methods

Besides the beam deflection method discussed above, also several other methods can
be used to detect the deflection of the AFM cantilever, or more generally the AFM
sensor. The general requirements for AFM detection methods are as follows:

• High sensitivity of the deflection measurement in the sub-ångström regime
• The measurement technique should not influence the deflection itself and should
not disturb the system, for instance by heating

• The technique should be easy to operate, i.e. with a minimal amount of adjusting.

In Fig. 11.4 different methods used to measure the cantilever deflection are dis-
played. The most widely used technique is the beam deflection method discussed in
detail in the previous section [4]. An advantage of this method is that it is easy to
implement technically. A disadvantage is the need for the optical adjustment of the
focused laser spot onto the backside of the cantilever and of the deflected beam onto
the split photodiode.

Another optical detection scheme is interferometry [5]. Here the backside of the
cantilever is used as a mirror of an optical laser interferometer. While this technique
has high sensitivity it is also the experimentallymost complicated.Reasonably simple
setups were only implemented using fiber interferometers [6]. One advantage of
this technique is the easy absolute calibration of the cantilever deflection by the
wavelength of the light.

The piezoresistive detection method operates completely electrically and requires
minimal experimental effort for the detection [7]. They are realized by producing a
piezoresistive layer on a cantilever and are commercially available. The resistance
of this layer changes when stress is applied onto the cantilever. The basic working
principle of a piezoresistive sensor is as follows. When the cantilever is bent by a
force acting on the tip, a mechanical stress occurs in the cantilever volume. When
a resistor formed by a stripe of piezoresistive layer on the cantilever is one of the
resistors in a Wheatstone bridge, the resistance of the layer on the cantilever is
measured which is proportional to the stress, which is in turn proportional to the

2In dynamic AFM the primary bandwidth detecting the oscillatory motion of the cantilever is
much larger than 1kHz used in this quantitative example, however, in this case also the oscillation
amplitudes to be detected exceed the pm range by far.
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Fig. 11.4 Different kinds of deflection sensors in AFM

deflection of the cantilever. The optimal conditions for maximal device sensitivity
are obtained when the Wheatstone bridge is located directly on the support wafer
of the sensor. Although the signal-to-noise ratio is slightly worse than in the optical
detection schemes, this is still an attractive detection scheme due to its ease of use.

Piezoelectric sensors made of quartz have recently come into use and have the
specific advantage that they can be used as sensor and actuator simultaneously. They
are used in dynamic AFMmeasurements where the sensor oscillates at the resonance
frequency. The piezoelectric sensor has two electrodes. One electrode can be used to
excite the sensor via the converse piezoelectric effect. The actualmechanic oscillation
amplitude of the quartz sensor induces via the piezoelectric effect a voltage which
is detected on the other electrode. This voltage is proportional to the deflection of
the tip which is attached to the quartz sensor. We will discuss this detection scheme
using quartz tuning forks and needle sensors in more detail in Chap. 18.

11.5 Cantilever Excitation in Dynamic AFM

Cantilevers have resonance frequencies of up to several hundred kHz. In order to
excite such cantilevers close to their resonance frequency the piezoelectric actuator
must have an even higher resonance frequency. Often this cannot be realized using
the tube piezo element used for scanning, since this has too low resonance frequen-
cies. Therefore, an additional piezo plate with a high resonance frequency is used to
oscillate the cantilever base and is frequently called the dither piezo element. This
type of cantilever excitation (piezoacoustic excitation) results in a cantilever oscil-
lation amplitude A, which is, since it is close to resonance, much larger than the
excitation amplitude.

While the piezoacoustic cantilever excitation is straightforward, in practice some
problems can occur. Themotion of the dither piezomay not only excite the cantilever,
but also mechanical resonances of the AFM structure. This results in distortions and
additional peaks in the resonance curve for amplitude and phase. These problems are
strongest for operation with small Q-factors, i.e. in air and even more severe during
operation in liquids, since in these case the resonance enhancement of the cantilever
oscillation is small.

An alternative to the piezoacoustic cantilever excitation via a dither piezo element,
avoiding the above mentioned problems, is the direct excitation of the cantilever. For
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cantilevers coated with magnetic material, an electromagnet can be used to exert an
force directly to the cantilever. Another method to excite the cantilever directly is
photothermal excitation [8].

In photothermal excitation, a second laser beam in addition to the one used to
detect the cantilever deflection (operating at a different wavelength), is used in order
to excite the cantilever closer to the base of the cantilever via the photothermal
effect. The laser power heats the cantilever locally, leading to thermally induced
strains which bend the cantilever. The excitation laser spot is focused close to the
cantilever base in order to avoid heating of the tip. If the laser power is modulated, the
cantilever will oscillate sinusoidally at this modulation frequency. Since exclusively
the cantilever is excited, avoiding the excitation of other parts of the AFM structure,
undistorted clean resonance curves are obtained even for small Q-factors.

Another issue is that most of the detection methods mentioned in in the previous
section do actually not measure the absolute z-position of the tip, but, due to the
detection of the cantilever bending, only the z-position of the tip relative to the
cantilever base. This is shown schematically in Fig. 11.5, showing the reference
situation with z = 0 and zdrive = 0 in blue. An upward motion of the cantilever base
by zdrive will almost not be detected by the beam deflection method, as the cantilever
remains unbent z = zdrive and moves only linearly upwards.

A linearmovement of the cantilever by zdrive leads to amovement of the laser beam
on the photodiode by the same amount �x = zdrive. Whereas, the same deflection
zdrive at the end of the cantilever induced by a bending of the cantilever leads to
a much larger shift of the laser beam on the photo detector �x , as outlined in the
following. The bending of the cantilever end by the angle θ results in an angle of
2θ for the reflected beam. The shift of the laser beam on the photodiode results (for
small angles) as �x = 2θL . Inserting θ from (11.4), results in

�x = 3L

l
�z. (11.16)

With usual dimensions of L � l the deflection on the photodiode�x ismore than 300
times larger than the tip deflection �z. This means that the beam deflection method
measures the component of the deflection �z arising from a cantilever bending.
A component of �z arising from a linear (e.g. upwards) motion of the cantilever
(without bending) is suppressed by a factor 3L/ l, which is usually greater than 300
and can be neglected.

Thus, the beam defection method detects the part of the cantilever total z-
displacement that leads to a bending of the cantilever with a much higher sensitivity
than a linear motion. According to Fig. 11.5 the beam deflection method detects the
effective z-displacement zeff = z − zdrive.

In dynamic AFM the influence of the (linear) driving motion of the cantilever
is even further suppressed. For sensors with a high quality factor the oscillation
amplitude A is much larger (Q-times) than the driving amplitude Adrive. Thus, Adrive

can be safely neglected. However, for operation in liquids, the Q-factor is very low
and the driving amplitude is comparable to the oscillation amplitude. If a detection
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Fig. 11.5 The beam deflection method senses the cantilever bending. Therefore, a pure vertical
motion of the cantilever base not leading to a bending, as indicated by the light green cantilever
position relative to the blue one, is largely suppressed in the signal of the photodiode. Only the
component of the vertical motion of the tip arising from the cantilever bending is sensed by the
beam deflection mode. Thus, zeff = z − zdrive is sensed by the beam deflection method

method is used, which is relying on the bending of the cantilever, in a very accurate
treatment the quantity z in the equation of motion (2.25) or (13.4) has to be expressed
by zeff + zdrive and the equation of motion has to be solved for the measured quantity
zeff .

11.6 Calibration of AFMMeasurements

While the relation between the cantilever deflection �z and the tip-sample force
is easily given by Hooke’s law3 as F = k�z, there are still two calibration steps to
be done. First, the signal actually measured is not the deflection �z itself, but the
sensor voltage �Vsensor, which is as a very good approximation proportional to the
deflection. The constant of proportionality is called sensitivity Ssensor with Ssensor =
�z/�Vsensor. Furthermore Hooke’s law contains the spring constant k, which has to
be determined in a second step. Both of these calibration steps are described in the
following sections.

The above-mentioned calibration steps lead in static AFM to a calibration of
the force which is important in static AFM. However, these calibration steps are
also important in dynamic AFM. The spring constant of the cantilever sensor is a
fundamental quantity also in the dynamic mode and the sensitivity of the sensor is
needed in order to determine the oscillation amplitude in a unit of length, not just as
sensor voltage.

3If the cantilever is tilted with respect to the surface by an angle α, the relation between the force
perpendicular to the surface and the deflection perpendicular to the surface is modified [9] to
F = k�z/ cos2 α. Since α is usually small (in the range between 10◦ and 15◦), this correction is
small and will be neglected it in the following.
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Fig. 11.6 Schematic of a
typical sensor voltage versus
sample z-position curve used
to determine the sensitivity
in AFM. The inverse slope
measured in the contact
regime gives the sensitivity
as Ssensor = �z/�Vsensor
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11.6.1 Experimental Determination of the Sensitivity Factor
in AFM

The output of the detection system in atomic force microscopy is usually a voltage
(sensor voltage). In the case of optical beam deflection, it is initially a current signal
from the photodiodes, which is converted to a voltage by a transimpedance amplifier.
Also for other detectionmethods, the detection systemdelivers a sensor voltage signal
�Vsensor, which is proportional to the cantilever deflection �z. Calibration of the
sensitivity means finding this proportionality factor Ssensor = �z/�Vsensor. For the
case of the beam deflection method, we found the approximate analytical expression
for the detection sensitivity (11.9).However, due to themultitude of (partly unknown)
parameters involved and due to the approximations made, the detection sensitivity
is usually determined experimentally.

For this purpose, sensor voltage versus position curves are measured, where the
sensor voltage is acquired as a function of the varying sample z-position. By applying
a voltage to the z-piezo element, the sample moves relative to the tip. The z-position
corresponding to a specific voltage at the z-piezo element is obtained by multiplying
this voltage with the corresponding piezo constant. Such a sensor voltage versus
position curve is shown schematically in Fig. 11.6 and can be roughly divided into
two regions. If the tip-sample distance is large (out of contact), a negligible force
acts between the tip and sample and the measured sensor voltage is independent of
the sample z-position. Here the sensor voltage is set to zero. If the tip comes into
contact with a hard sample, the sample bends the cantilever upwards. This upward
cantilever deflection means that the corresponding sensor voltage increases linearly
with the sample position.4 From the corresponding (inverse) slope, the detection
sensitivity can be obtained as Ssensor = �z/�Vsensor in nm/V. The calibration should
be performed on a hard sample with negligible elasticity, e.g. a silicon wafer. If one

4Specific effects occurring close to the kink between the two regions are discussed in Sect. 12.5.
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is concerned about the integrity of the tip, this calibration procedure should be done
after the actual measurements have been completed. The sensitivity depends on the
adjustment of the optical system (laser diode, cantilever, photo diode) and should
thus be repeated if something on the optical system has changed. In Sect. 11.6.5 we
will introduce another method for sensor calibration in which no contact between
tip and sample is made in order to obtain the sensitivity. The method of sensitivity
determination outlined above applies to cantilever-type force sensors. A procedure
for the determination of the sensitivity for the much stiffer quartz sensors is outlined
in Chap.18.

11.6.2 Calculation of the Spring Constant from the
Geometrical Data of the Cantilever

The easiest way is to take the spring constant from the specifications of the manufac-
turer of the cantilever. However, often this information is not accurate enough. If the
shape of the sensor is sufficiently well known, the spring constant can be calculated
from the geometry of the cantilever and the elastic constants of the cantilever mate-
rial. The geometric dimensions of a rectangular cantilever are introduced in Fig. 11.7.
The bending of the cantilever is out of the plane of the paper in Fig. 11.7a, while in
Fig. 11.7b a side view is shown. The spring constant of a rectangular cantilever beam
for the bending direction used in AFM is given by [2]

k = Ewt3

4L3
, (11.17)

with E being Young’s modulus.
While the width and length of a cantilever can be determined using a plan view

optical microscope, the thickness t of the cantilever is usually much smaller and thus

Fig. 11.7 Sketch of a
rectangular cantilever
together with the carrier chip
on the left. a Top view, b side
view including the
dimensions of the cantilever
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not easily measured. Unfortunately, this parameter enters with the third power into
expression (11.17) for the spring constant. The thickness of the cantilever can be
taken from the manufacturers specifications, or from a measurement performed with
a scanning electron microscope. However, if no precise information on the thickness
t of the cantilever is available, the more easily measurable resonance frequency of
the cantilever can be used in order to replace t in (11.17). Considering the effective
mass of the rectangular cantilever meff = 0.2357mspring from (2.52), the resonance
frequency is written as

ω0 =
√

k

meff
=

√
k

0.2357ρLwt
. (11.18)

Combining (11.18) and (11.17), t can be eliminated and the following expression
for the spring constant is obtained

k = 0.239wL3ω3
0

√
ρ3

E
. (11.19)

This approach to eliminate quantities which are not precisely known by other given
or measured quantities can be extended as done in the next section for Young’s
modulus E . It is useful to replace Young’s modulus because it can vary from can-
tilever to cantilever. For silicon nitride as a compound material, Young’s modulus
varies depending on the material composition, i.e. on the parameters used during the
chemical vapor deposition process. Also the metallic coating on the back side of the
cantilever, used for better reflection of the laser beam modifies the Young’s modulus
of the cantilever.

One reason why the calculation of the spring constant from the geometrical data is
not so precise is that it is based on the equation of a rectangular beam (11.17), while
in reality the cantilever narrows towards the end, and also the cross section of real
cantilevers are not always rectangular. Moreover, the mass of the tip at the end and
the not completely rigid fixing of the cantilever at the base make the application of
the ideal equation (11.17) imprecise. Therefore, other methods for the determination
of the spring constant of the cantilever will be discussed in the following.

11.6.3 Sader Method for the Determination of the Spring
Constant of a Cantilever

If the damping of the cantilever in the fluid surrounding the cantilever during its
oscillation is considered, the spring constant for a rectangular cantilever can be
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calculated including the (easilymeasurable) parameters5 ω0 and Q, while excluding t
and E [10]. The spring constant results as

k = 0.19ρ f w
2LQ f Γi (Re)ω

2
0, f . (11.20)

Here ρ f is the density of the fluid surrounding the cantilever (usually air), while ω0, f

and Q f are the resonance frequency and the quality factor of the free cantilever in
the presence of the fluid. This equation assumes that the quality factor is much larger
than one. The quantity Γi (Re) is the imaginary part of the hydrodynamic function,
as described and shown in Fig. 1 of [10]. The hydrodynamic function is a function
of the Reynolds number, which is defined as Re = ρ f w

2ω0, f /(4η), with η being
the viscosity of the fluid.6 There is also a relevant web app to calculate the spring
constant using the Sader method. The spring constant of triangular cantilevers is
related to the spring constant of rectangular cantilevers as described in [11, 13].

11.6.4 Thermal Method for the Determination of the Spring
Constant of a Cantilever

Hutter and Bechhoefer proposed another method for the determination of the spring
constant of a cantilever [14]. Unlike the Sader method, it is not named after the
inventors, but rather called the “thermal method” for the determination of the spring
constant and relies on the measurement of the thermal noise of the cantilever. The
principle of this method is based on the equipartition theorem. According to this, the
thermal noise of the amplitude �zth of an ideal harmonic oscillator is related to its
static spring constant k by [3]

1

2
k

〈
�z2th

〉 = 1

2
kBT, (11.21)

with
〈
�z2th

〉
being the mean square of the thermal amplitude fluctuations of the oscil-

lator. In applying this to the case of a cantilever, the mean-square displacement of the
free cantilever has to bemeasured in order to determine the spring constant. In princi-
ple, this can be done bymonitoring the time behavior of the deflection (squared) for a
free cantilever, i.e. far from the surface. However, such measurements are performed
in practice using the power spectral density of the cantilever, as shown below. An
advantage of the thermal method is that it can be applied to a free cantilever not in
contact with the sample.

5The parameters ω0 and Q can be obtained by measuring a resonance curve of the cantilever in
response to an external excitation (frequency sweep over the resonance). Alternatively, the thermal
noise spectrum can be measured, as described in the next section.
6The density and viscosity for the most frequently used fluids (air and water) are: ρair = 1.2 kg/m3,
ηair = 1.85 × 10−5 kg/(ms), and ρwater = 1 × 103 kg/m3, ηwater = 8.9 × 10−4 kg/(ms), respec-
tively, under ambient conditions and at sea level [12].
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In the following, we discuss how the spring constant k can be obtained from
the thermal deflection noise density of the cantilever considered as simple har-
monic oscillator, i.e. only the fundamental mode is considered. In the time domain
the thermal cantilever noise is described by the deflection �z(t), while in the fre-
quency domain the corresponding quantity is the power spectral density (PSD) of
the cantilever noise N 2

z,th( f ), as introduced in Chap.5. The noise spectral density

is Nz,th( f ) =
√
N 2
z,th( f ). In the following, we assume that the noise power spectral

density has been measured (by Fourier transformation of the time signal) using a
spectrum analyzer.7 The power spectral density of the thermal noise has as function
of frequency a resonance peak behavior known as thermal peak. In Sect. 17.1 it is
shown that the thermal noise spectral density of a harmonic oscillator can be written
(after the subtraction of a constant background, arising from sensor displacement
noise) as

N 2
z,th( f ) = N 2

z,th,excG
2( f ) = N 2

z,th,exc(
1 − f 2

f 20

)2 + 1
Q2

f 2

f 20

, (11.22)

with N 2
z,th,exc being the (frequency-independent) white noise arising from the thermal

excitation. From a fit of this function to the experimentally measured noise density,
the parameters N 2

z,th,exc, Q, and f0 can be determined. The integral over G2( f ) can
be calculated and results as πQ f0/2 (compare Sect. 17.1). Thus, using (5.13) and
(11.21) the following relation results

〈
�z2

〉 =
∞∫
0

N 2
z,th( f )d f = N 2

z,th,exc
πQ f0
2

= kBT

k
. (11.23)

With this, the spring constant of the simple harmonic oscillator considered here
results as

k = 2kBT

πN 2
z,th,excQ f0

. (11.24)

Importantly, this thermal method for the determination of the spring constant of the
sensor can also be used for other types of sensors than cantilever beams, for instance
quartz sensors, which will be discussed in Chap.18. If the cantilever spring constant
is known from other sources, (11.23) can be used to determine the thermal oscillation
amplitude

〈
�z2

〉
.

In AppendixC we present several corrections (going beyond the approximation
of the cantilever as a simple harmonic oscillator) which have to be applied for a more
exact determination of the force constant by the thermal method.

7Details of how to extract the noise power spectral density from the time signal without using a
spectrum analyzer are given in AppendixB or [15].
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11.6.5 Experimental Determination of the Sensitivity
and Spring Constant in AFM Without
Tip-Sample Contact

In the preceding sections, we described two methods for the measurement of the
spring constant (the Sader method and the thermal method), as well as the standard
method for obtaining the sensitivity factor of the cantilever Ssensor. This standard
method using a sensor voltage versus position curve on a hard sample for the deter-
mination of the sensitivity factor has the disadvantage that a hard contact between
tip and sample occurs. This can in principle lead to tip damage or a contamination of
the tip. Therefore, a calibration of the sensitivity factor without tip-sample contact
is desirable.

In the following, we describe how the two non-contact methods for the determi-
nation of the cantilever spring constant k can be combined in order to obtain the
sensitivity factor as well as the spring constant of the cantilever without any contact
between tip and sample [16]. In a first step the Sader method is used, as described
above, in order to determine the spring constant of the cantilever k. In the follow-
ing, the thermal method is used, however, this time in order to obtain the sensitivity
factor Ssensor. In the thermal method the primary measured quantity is the voltage
corresponding to the thermal fluctuations of the AFM sensor (e.g. cantilever) dis-
placement �Vsensor,th. This quantity is converted to �zsensor,th using the sensitivity
factor Ssensor as �zsensor,th = �Vsensor,thSsensor. Inserting this in (11.21) results in

1

2
kS2sensor

〈
�V 2

sensor,th

〉 = 1

2
kBT . (11.25)

If the spring constant k is known from the Sader method, Ssensor can be determined
from the time average of the measured thermal fluctuations of the sensor voltage〈
�V 2

sensor,th

〉
.

While the previous consideration shows conceptually how to combine the Sader
method and the thermal method in order to determine both, the spring constant and
the sensitivity factor without tip-sample contact, in practice the spectral density is
used, as outlined in the following.

The deflection noise density Nz,th( f ) given in (11.22) is related to the actually
measured deflection voltage noise density NV,th( f ) by Nz,th( f ) = NV,th( f )Ssensor.
The thermal noise power spectral density N 2

V,th( f ) of the cantilever deflection signal
can be measured using a spectrum analyzer. This experimentally measured noise
density can be fitted (similar to (11.22)) by the function

N 2
V,th( f ) = N 2

V,th,exc(
1 − f 2

f 20

)2 + 1
Q2

f 2

f 20

, (11.26)
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in order to determine f0, Q, and NV,th,exc. Analogous to (11.23) the following equa-
tion holds

〈
�z2

〉 = S2sensor

∞∫
0

N 2
V,th( f )d f = S2sensorN

2
V,th,exc

πQ f0
2

= kBT

k
. (11.27)

From this equation the sensitivity factor Ssensor can be determined as

Ssensor =
√

2kBT

πN 2
V,th,exckQ f0

, (11.28)

and thus Ssensor can be determined without tip-sample contact. In total with this com-
bination of the Sader method and the thermal method k and Ssensor can be determined
without tip-sample contact.

11.7 Summary

• Cantilever force sensors for atomic force microscopy should have a small spring
constant in order to obtain a high force sensitivity and avoid large tip-sample forces.
As a second condition the cantilevers should have a high resonance frequency
in order to obtain a fast scanning as well as immunity to external vibrations.
Both requirements can be fulfilled by sensors with a small mass, i.e. micrometer
dimensions.

• Cantilevers for atomic force microscopy are fabricated from silicon using lithog-
raphy and wet etching technologies from microelectronics.

• In the beam deflection method, a laser beam is reflected from the back of the
cantilever and the angular deflection of the beam is detected by a split photodiode.
This signal is proportional to the deflection of the cantilever �z.

• The optical beam deflection method is a very sensitive method (�z ∼ pm) for
measuring the cantilever deflection.

• Other AFM detection methods are interferometry, piezoresistive detection, and
piezoelectric detection.

• Sensor voltage versus distance curves are used to convert the measured sensor
voltage�Vsensor to a cantilever deflection�z, i.e. determining the sensor sensitivity
factor Ssensor.

• The cantilever spring constant can be obtained (a) by the material constants and
dimensions, (b) by considering damping in a fluid (Sader method), or (c) via the
deflection amplitude of the thermal noise signal (thermal method).

• With a combination of the Sader method and the thermal method, k and Ssensor
both can be determined without tip-sample contact.
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Chapter 12
Static Atomic Force Microscopy

In static atomic force microscopy the force between the tip and the sample leads to
a deflection of the cantilever according to Hooke’s law. This cantilever bending is
measured, for instance, by the beam deflection method. The name static comes from
the fact that the cantilever is not excited to oscillate, as in the dynamic modes of
AFM. In the following, we will discuss the static mode, while the dynamic variants
are considered in the subsequent chapters. At the end of this chapter, we discuss how
force-distance curves can be used to identify the tip-sample interaction regime in
which subsequent imaging is performed.

12.1 Principles of Static Atomic Force Microscopy

In static atomic force microscopy, the sample is scanned in the xy-direction while
the tip-sample distance is so small that the cantilever sensor can sense the tip-sample
force. In the constant force mode of static atomic force microscopy, a certain setpoint
value of the tip-sample force is selected via a certain deflection of the cantilever �z,
which is in turn realized by a corresponding sensor signal�Vsensor. The sensor signal
is kept close to the setpoint value via a feedback loop as shown already in Fig. 1.8.
When scanning, for example, over a step edge, the tip-sample force changes and thus
the corresponding deflection �z deviates from its setpoint value. The feedback elec-
tronics adjusts the z-signal controlling the tip-sample z-distance in order to restore
the setpoint value of the cantilever deflection �z. For ideal feedback, the deflection
of the cantilever should always stay very close to its setpoint value. Topographic
images are recorded by scanning the tip over the sample surface, while the feed-
back maintains constant cantilever deflection. The z-height contour corresponds to
a contour of constant tip-sample force. For the setpoint value of the force, either a
repulsive force or an attractive force can be selected.

Static atomic forcemicroscopy often operates in the repulsive regime of the force-
distance curve. In this case, static atomic force microscopy is also known as contact
mode atomic force microscopy. The terms static mode and contact mode (repulsive
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Fcant= - k z

z

Fts

Fig. 12.1 Force equilibrium in static mode. The tip-sample force Fts and the spring force of the
cantilever compensate to a net vanishing force

force regime) are oftenmisleadingly used as synonyms.However, it is also possible to
operate the static atomic force microscopy in the attractive (non-contact) regime. We
will distinguish between the mode of operation: static (non-oscillating cantilever) or
dynamic (oscillating cantilever), on the one hand, and the type of interaction probed:
repulsive (contact) or attractive (non-contact), on the other hand.

In static atomic force microscopy, the z-position of the tip, i.e. the deflection of
the cantilever, is given by a balance of forces. If the tip comes close to the sample,
a force Fts acts on the tip. This force leads to a deflection of the cantilever by �z
relative to the equilibrium of the free cantilever and to a corresponding force Fcant,
as shown in Fig. 12.1. In equilibrium, the total force on the cantilever has to vanish
as

Ftot = 0 = Fts + Fcant, (12.1)

with Fcant = −k�z.
If we take a closer look at the force between tip and sample, Fts, this force com-

prises several forces: the long-range attractive van derWaals force and the short-range
repulsive forces as well as the Hertzian contact force. For the force between individ-
ual pairs of tip and sample atoms, we consider as amodel potential the Lennard-Jones
potential plotted once more in Fig. 12.2b. The direction of the force on individual tip
atoms resulting from the interactionwith the sample is shown by arrows in Fig. 12.2a.
For different atoms of the tip, forces with different strength and direction act depend-
ing on the distance to the sample. Tip atoms closer to the sample experience a net
repulsive force (red in Fig. 12.2), while the atoms slightly farther from the sample
experience an attractive interaction (blue in Fig. 12.2). The total tip-sample force is
obtained by summation.

Considering that the force between the tip and sample arises due to summation
(integration) over billions of atoms in the tip (and in the sample) it might be feared
that nanometer or even atomic resolution might never be reached. In this regard two
things are helpful: (a) the long-range (attractive) interactions are much weaker than
the short-range repulsive forces and (b) the distance dependence of the long-range
forces is muchweaker than that of the short-range forces. Thus, the long-range forces
result in a background force which is almost independent of the tip-sample distance,
if, for instance, the tip-sample distance changes by 1Å. However, 1Å change in tip-
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Fig. 12.2 Forces on the tip atoms due to interaction with the sample. For the atoms close to the
surface the net interaction with the sample is repulsive (indicated in red). For larger distances to the
sample, the interaction is attractive (indicated in blue)

sample distance changes the short-range forces significantly, enabling nanometer or
even atomic resolution, as we will see later.

There are cases in which the total interaction between tip and sample can still be
attractive due to the long-range attractive forces, while it is already repulsive for the
atoms at the tip apex. Since the tip-sample forces also act on the sample, the sample
(and tip) can be deformed if these forces become strong. This deformation of tip and
sample in the area of the repulsive interaction can establish a contact area consisting
of several atoms and therefore inhibit true atomic resolution of single defects in the
atomic lattice. This effect in contact atomic forcemicroscopy is called the “egg carton
effect”, since the atomic corrugations of tip and sample slide along each other like
two egg cartons. Since the repulsive forces increase very strongly with decreasing
tip-sample distance, images of constant repulsive force are often identified with the
topography of the surface.

The non-monotonous distance dependence of the tip-sample force leads to the
fact that for some forces (negative forces in Fig. 12.2b) two tip-sample distances
exist for a certain force. Depending on the polarity (direction) of the feedback one
or the other of the two branches with different slope can be stabilized. As discussed
in Sect. 16.3 in detail, this can lead to instabilities in feedback behavior if the tip
unintentionally switches from one branch to the other branch with the opposite slope
as a function of distance. Only for net repulsive forces there is a single branch present
and instabilities are avoided.

12.2 Properties of Static AFM Imaging

If static atomic force microscopy is operated in the contact mode, the tip is in direct
contact with the sample and strong repulsive forces act between tip and sample. To
avoid damaging the probed surface, the cantilever should be soft, i.e. the cantilever
spring constant should be lower than the effective spring constant of the sample
atomic bonds.As discussed in Sect. 10.5, under this condition snap-to-contact occurs,
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which is actually desired in the contact mode in order to maintain tip-sample contact
during scanning.

The standard application of contact AFM is imaging the surface topography with
a resolution in the nanometer range. Especially the direct determination of the height
of image features is an advantage of AFMmeasurements. In other microscopy tech-
niques such as opticalmicroscopy or scanning electronmicroscopy, the lateral feature
size is easily measured, but using these techniques do not give easy access to the true
height of the imaged features.

Atomically “resolved” images using the contact mode AFM technique were
first obtained on layered materials like graphite, boron nitride, mica, molybdenum
selenide and others [1, 2]. These materials have the advantage that clean surfaces
can be prepared under ambient conditions. While a corrugation with a periodicity of
the atomic lattice is observed, defects of atomic size are not observed. This led to the
conclusion that small flakes of the layered material are probably attached at the tip
apex and that an “egg carton effect” prevents the detection of atomic size defects.

After the first successful applications of contact AFM to layered materials, it was
natural to extend the investigations to non-layered materials. For these cases, the
effect of dragging flakes of the layered materials over the surface does not occur.
Inorganic crystals likeNaCl [3] or LiFwere prepared in ultrahigh vacuumand imaged
with contact AFM. Typical forces between the sample and the tip during imaging
are set to approximately 10−8 N. The measured step heights range down to single
atomic steps and atomic corrugation was observed.

The contact zone between tip and sample in contact mode AFM is assumed not
to be a single atom but consisting of many atoms. The tip is usually of a different
material than the sample surface and therefore, the tip atoms are not in registry with
the sample surface structure. The usual understanding for the observation of atomic
corrugation is that the atoms of the tip lock into the atomic lattice of the sample, so
the atomic lattice of the sample is imaged. Thus, also on salt crystals like NaCl or LiF
no single atomic defects were observed in contact mode AFM. Due to an “egg carton
effect” between the sample and the contact area of the tip, it is possible to observe
atomic corrugation, while no atomic scale defects are seen and correspondingly no
true atomic resolution is possible.

Typical problems with contact mode AFM are that contact diameters lie in the
range of 1–10nm, limiting the lateral resolution. Moreover, the relatively high forces
can lead to a wear of soft (organic or biological) samples.

12.3 Constant Height Mode in Static AFM

Up to nowwe have considered the constant force mode of static AFM, the tip-sample
force is controlled to a certain value given by the setpoint for the cantilever deflection.
For the constant height mode we assume for the moment that the sample surface is
perfectly aligned to the scanner, i.e. no scanning slope is present (cf. Chap. 7). In
this case an xy-scan can be performed (starting with an initially preset tip-sample
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Contact mode

Lift mode

d

Fig. 12.3 Principle of the lift mode. In a first scan line, the topography is measured (contact mode).
In a second scan line, the topography is retraced with an offset �d (dashed line). The deflection
due to the long-range magnetic interaction is measured relative to this retraced height (solid line)

distance) and the change of the cantilever deflection is measured. In this case, no
feedback is involved and the scan can be performed fast. The constant height mode
is mostly applied for long-range forces, i.e. electrostatic or magnetic forces.

Since it is difficult in practice to get rid of the sample tilt the actual experimen-
tal procedure is different from the principle described above. We consider here as
an example a magnetic interaction sensed with a ferromagnetic tip, as sketched in
Fig. 12.3. In order to be independent of variations in the topography every scan line
is scanned twice. First the topography is measured using the contact mode, and in
a second scan of the same line the measured topography is followed with an offset
�d relative to the previous scan line as shown in Fig. 12.3 by the dashed line. In this
second line, the long-range magnetic interactions are detected by a corresponding
deflection of the cantilever shown as a solid green line in Fig. 12.3. The difference
between the two signals (the dashed and solid line) corresponds to the magnetic
signal. This kind of constant height mode is also called the lift mode.

12.4 Friction Force Microscopy (FFM)

Due to the relative motion of tip and sample in contact mode, friction in the tip-
sample contact will lead to a lateral force on the tip apex. If the scanning direction
is sidewise to the cantilever length, this lateral force causes a torsional bending of
the cantilever, which can be recorded in beam deflection microscopes as shown in
Fig. 12.4a. Quadrant photo-diodes are used in the optical beam deflection method
anyway in order to guide the beam reflected from the cantilever to the center of
the photo diode. If the four quadrant cells are labeled as shown in Fig. 12.4a, the
topography is contained in the signal (A + B) − (C + D). The torsional bending of
the cantilever (friction signal) is contained in the signal (A + C) − (B + D). In this
way the local variation of friction can be studied with high resolution and for various
values of external parameters like the load force or the scanning velocity. One great
benefit of friction force microscopy (FFM) is that it is possible to measure whether
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Fig. 12.4 a Principle of the detection of friction forces by the beam deflection method using a
quadrant photodiode. b Difference in the friction signals in trace and retrace direction on materials
with two different friction coefficients. The friction signal changes the sign between the trace and
retrace directions of the fast scan direction

wear has taken place in the course of the experiment by subsequent imaging of the
relevant area.

The friction signal can also be used in order to obtainmaterial contrast. In this case
the method is sometimes called also lateral force microscopy (LFM). The principle
is shown in Fig. 12.4b for a sample which consists of two different materials A and
B with different friction properties this leads to two different friction signals f1 and
f2, respectively (same height of materials A and B) resulting in a material contrast
in the friction signal. A specific signature for a friction signal is the following: If
the same scan line is scanned in the opposite direction (retrace) the friction signals
reverse as shown in Fig. 12.4b.

12.5 Force-Distance Curves

Force-distance curves are measured by bringing the sample towards the cantilever
tip and measuring the cantilever deflection which is proportional to the tip-sample
force. These force-distance curves contain the following useful information: (a) The
sensitivity of the detection method can be determined as described in Sect. 11.6. (b)
Properties like the sample elasticity or the maximum tip-sample adhesion force can
be accessed. (c) The working point (setpoint for the cantilever deflection signal) for
subsequent AFM imaging can be characterized and chosen properly. For instance,
when imaging is performed in the attractive force regime it can be determined how
far the working point is located from the point of snap-to-contact. (d) A force-
distance curve can be used to determine the tip-sample force-distance dependence,
at least partly.



12.5 Force-Distance Curves 205

z

0

zsample

d=z -ztip      sample

ztip

Fig. 12.5 Nomenclature for the coordinates used in force-distance curves

The aim is to obtain the tip-sample force Fts(d) as a function of the tip-sample
distance d, as indicated in Fig. 12.5. What is actually measured when acquiring a
force-distance curve is the deflection of the cantilever ztip (which is proportional to
the tip-sample force) as function of the z-position of the sample zsample as ztip(zsample).
This has the disadvantage that the tip-sample distance d is not only given by the
(intended) z-motion of the sample (induced by a voltage at the z-piezo element)
but also by an additional distance change due to the deflection of the cantilever ztip
(force measurement) as shown in Fig. 12.5. However, d can always be recovered as
d = ztip − zsample.With the coordinate system in Fig. 12.5, the action (approach of the
sample) and the reaction (deflection of the cantilever) are separated into two coordi-
nates. Also experimentally, these two parameters are measured or set independently:
ztip ismeasured via the cantilever deflection,while zsample is set via the applied z-piezo
voltage. As the zero point for ztip and zsample, we choose the equilibrium position of
the cantilever tip with the sample far away.

Figure12.6a shows a schematic of a ztip(zsample) plot for the model force-distance
curve which is shown in the inset. The blue curve corresponds to the approach of
the sample towards the tip, while the red curve corresponds to the retraction of the
sample. As the sample approaches the tip (increasing zsample from the right to the
left) the cantilever bends slightly towards the sample (negative ztip values) due to the
attractive force between tip and sample. At point c, the force gradient exceeds the
value of the spring constant k (indicated by a dashed line in the inset). This leads
to the previously discussed instability and to snap-to-contact (cf. Sect. 10.5). The
cantilever jumps to point d. The maximal cantilever deflection at point c multiplied
by the spring constant gives the maximum attractive force before snap-to-contact
(usually quite small).

If the sample is moved further towards the tip, the point is reachedwhere attractive
and repulsive tip-sample interactions compensate each other and the net tip-sample
force vanishes. At this position, the cantilever is unbent (ztip = 0). The position
zsample has in the experiment an unknown offset (the z-position moving the sample
is not known absolute, relative to ztip = 0) which is fixed by setting zsample = 0
when ztip = 0, as done in Fig. 12.6a.1 If the sample is pushed further towards the

1This is somewhat different from the tip-sample distance used for the Lennard-Jones force, where a
tip-sample distance (or better atom-atomdistance) of zero corresponds to a repulsive force approach-
ing infinite strength.
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Fig. 12.6 a Schematic of a ztip(zsample) plot with the blue curve corresponding to an approach of
the sample toward the tip, while the red curve corresponds to a retraction of the sample. The
nomenclature for the variables is the same as in Fig. 12.5. At points c and f , the tip-sample
force gradient becomes equal to the spring constant of the cantilever and leads to an instability
associated with snap-to-contact or snap-out-of-contact, respectively. b Experimentally measured
force-distance curve obtained on a silicon wafer in a lab course at RWTH Aachen University. The
cantilever spring constant was 0.13N/m (The unusual coordinate system has negative zsample values
going to the right. This is, however, the way it is normally plotted)
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tip, the regime of repulsive tip-sample interaction is entered. In the repulsive regime
the sample bends the cantilever upwards. As for hard samples the repulsive force
rises very sharply with decreasing tip-sample distance, both tip and sample move
together (�zsample ≈ �ztip and d ≈ 0) Specifically for a stiff sample with a high
elastic modulus, the ztip(zsample) curve is a straight line with a slope of one, as shown
in the left part of Fig. 12.6a. If the sample is soft, the slope can be (initially) smaller
than one (due to an indentation of the tip into the sample), resulting in information
about the elastic/plastic deformation of the sample (cf. Chap.15).

If the direction of the sample motion is reversed, the tip motion follows the same
straight line in the reverse direction (red line) for stiff samples. The repulsive tip-
sample force decreases continuously andfinally the attractive regime is entered again,
where tip and sample adhere to each other as long as the tip-sample force gradient
is smaller than the cantilever spring constant. If the force gradient becomes larger
than the cantilever spring constant, the cantilever snaps out of contact (point f ).
The tip snaps back to a position where the deflection of the cantilever is close to
zero (point a). Point f corresponds (approximately) to the position at which the
maximum attractive force (adhesion force) between tip and sample acts. Generally,
for elastic samples the retraction curve and the approach curve are the same in the
repulsive regime, while for a plastic deformation the repulsive force during retraction
is smaller than during approach.

In Fig. 12.6b an experimental force-distance curve is shown which in principle
resembles the behavior discussed above. Themeasured tip deflection is converted (via
Hooke’s law Fts = −Fcant = kztip) to a corresponding force Fcant, which is shown on
the right axis in Fig. 12.6b. In the experimental ztip(zsample) plot, the jump to contact
(from point c to point d) is small. The corresponding force (the attractive force before
snap into contact) is less than 1nN. The maximal attractive force, which is reached
at point f just before snap out of contact, can be extracted as 10nN. Also the width
of the attractive force minimum can be read from the difference in ztip between point
c and d. This shows that several important parameters can be extracted directly from
themeasured force-distance curve. In one respect, the measured force-distance curve
does not follow the idealized expectation shown in Fig. 12.6a. The approach curve
(blue) and the retract curve (red) do not coincide for positive sample distances in
Fig. 12.6b. This effect arises due to hysteresis and creep effects of the piezoelectric
actuators.

In principle, the measured ztip(zsample) curve or equivalently the Fts(zsample) curve
(right axis in Fig. 12.6b) can be translated into the more fundamental force-distance
curve Fts(d) = kztip, with d = ztip − zsample. However, as can be seen from the inset
in Fig. 12.6a, the force-distance curve between points c and f is inaccessible due to
snap in and out of contact. Unfortunately, this is one of the interesting regions. For
large distances down to point c the tip-sample force is almost negligible, while for
distances closer than point f , the force rises very steeply. The range in which the
force-distance curve can be measured could be extended by using a cantilever with a
larger spring constant. However, this has the drawback of reduced force sensitivity.

The importance of the force-distance curves for subsequent imaging lies in the
fact that a particular point on the force-distance curve can be identified and that
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subsequent imaging of the sample can be performed at a defined position (working
point) on this curve. This is important because the imaging inAFMdepends critically
on the applied force. For instance in imaging soft (biological) samples it is preferable
to avoid strong repulsive forces between tip and sample as this leads to wear on soft
sample structures. In order to achieve this the force-distance curve can be measured
and the working point for imaging is selected close to point f in Fig. 12.6a, i.e. in
the regime of attractive tip-sample interaction, thus avoiding large repulsive forces.
However, since this condition is close to snap-out-of contact, there is a danger of
leaving the desired imaging conditions by snap-out-of-contact.

The use of force-distance curves in order to determine fundamental force-distance
dependences is limited. Several fundamental forces act simultaneously and sum up
over the tip and sample volume. The measured forces are integrals of several funda-
mental forces over large volumes of tip and sample. Additional problems such as cap-
illary forces, an unknown tip shape, and piezo creep complicate a more quantitative
interpretation of the tip-sample interaction. Due to these limitations, force-distance
curves are not used to measure the fundamental forces.

12.6 Summary

• In static AFM, the tip-sample force is measured via the deflection of the cantilever
�z.

• In the constant force mode of static AFM, a certain force setpoint is kept constant
by feedback during scanning of the surface. The resulting topography corresponds
to a contour at constant tip-sample force.

• In the repulsive interaction regime, the tip-sample contact consists of many atoms
and thus no atomic resolution is expected, but atomic corrugation can be observed.

• The constant height mode is mostly used to image corrugation induced by long-
range interactions such as magnetic or electrostatic forces.

• Friction forces can be measured via the torsional bending of the cantilever using
a quadrant photodiode.

• Force-distance measurements give access to various parameters of the force-
distance curve. The working point for subsequent AFM imaging can be chosen
using the information from the force-distance curve.
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Chapter 13
Amplitude Modulation (AM) Mode
in Dynamic Atomic Force Microscopy

In dynamic atomic force microscopy the cantilever is excited at a driving frequency
which is close to the resonance frequency of the free cantilever [1–3]. Due to the
interaction between tip and the surface, the resonance frequency of the cantilever
changes. As shown in this chapter, an attractive force between tip and sample leads
to a lower resonance frequency of the cantilever, while for repulsive tip-sample forces
the resonance frequency increases.1

This change in resonance frequency can be measured directly in the frequency
modulation mode (FM) of atomic force microscopy, as described in Chap. 16. In
this chapter, we describe the amplitude modulation mode (AM) of AFM. In this
mode the cantilever is driven (oscillated) at a fixed frequency with a fixed driving
amplitude. The change of the resonance frequency due to the tip-sample interaction
leads to a change of the oscillation amplitude and of the phase between excitation
and oscillation, which can be measured.

We consider the AM detection mode in this chapter in the small amplitude limit
in which the tip-sample force is approximated as linear in the range of the oscillation
amplitude. In this case, the AM detection mode can be treated analytically. While in
practice the AM detection mode is rarely used in this limit, the basic concepts can be
explained more easily using this limit. When in the next chapter the small amplitude
limit is lifted, things become somewhat more complicated. However, armed with a
basic understanding obtained from the treatment of the small amplitude limit, the
more realistic case is then easier to comprehend.

13.1 Parameters of Dynamic Atomic Force Microscopy

Compared to static AFM, there are many more parameters in dynamic AFM.

1Actually, this is not strictly true: As shown later it is not the sign of the force, but rather the sign
of the force gradient that determines the direction of the resonance frequency shift.
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• The resonance frequency of the free cantilever ω0

• The force constant of the cantilever k
• The quality factor of the cantilever Qcant

• The driving frequency ωdrive

• The driving amplitude of the oscillation Adrive

• The oscillation amplitude A
• The phase φ between oscillation and driving
• The frequency shift of the resonance frequency �ω relative to ω0 due to a tip-
sample interaction

The first two parameters are given by the cantilever, while the Q-factor depends on
the cantilever and also on the operating environment (ambient or vacuum).Depending
on the operating mode, further parameters can be set by the operator or measured:

• In AM detection the amplitude A and phase φ of the oscillation are measured,
while ωdrive is fixed and Adrive is set via the setpoint of the feedback loop.

• In FM detection the shift of the resonance frequency �ω is measured, while the
excitation amplitude or the oscillation amplitude are set.

Because this multitude of parameters may seem somewhat discouraging, we will
discuss the parameters and the relations among them step by step in the following.

13.2 Principles of Amplitude Modulation Dynamic Atomic
Force Microscopy

As the simplest model for the cantilever under the influence of a tip-sample inter-
action, we consider the driven damped harmonic oscillator as discussed in Sect. 2.4
including the influence of a time-independent external tip-sample force Fts, which
depends on the tip-sample distance. In this section, we assume that dissipation enters
only via the (air) damping of the cantilever, while the tip-sample interaction is
assumed to be conservative.

We assume the limit of small amplitude, which means that Fts can be approxi-
mated as linear (as function of the tip-sample distance) in the range of the oscillation
amplitude A. We use this limit here because this idealized scenario can be solved
analytically. For the usual vibration amplitudes (several tens nanometers) the small
amplitude limit does not hold.

We split the tip-sample distance into a constant (offset) distance d, while the
oscillatory motion of the tip is described by the coordinate z. The definition of the
coordinates of the cantilever-tip-sample system is given in Fig. 13.1.

Before we analyze the oscillating cantilever, we consider the static case (i.e. the
oscillatory amplitudes Adrive and A in Fig. 13.1 are zero). Without a tip-sample force
being present, the tip is at its zero position z = 0 and the cantilever is unbent (shown



13.2 Principles of Amplitude Modulation Dynamic Atomic Force Microscopy 211

Sample

z

d
z = A cos( t+drive )
z + L= A cos( t) + Ldrive drive drive

F (d+z)ts

Piezo

L
z = 0

Fig. 13.1 Definition of the coordinates for a driven damped harmonic oscillator under the influence
of a tip-sample force

in light gray in Fig. 13.1). In this case the static bending�L is zero.2 If the tip-sample
force is now switched on, the tip-sample distance will change. Since we would like
to probe the interaction at a tip-sample distance d, the initial zero position of the tip,
z = 0, is restored by moving the cantilever base in the opposite direction, shown in
dark gray in Fig. 13.1. In static equilibrium with the cantilever bent, the tip-sample
force and the static bending force balance at z = 0 as

Fts (d) = −k�L , (13.1)

with �L being the static (offset) deflection of the cantilever (Fig. 13.1).
Now we begin to consider an oscillating cantilever. For the tip-sample force

Fts(d + z), we use the coordinate d + z (tip-sample distance), with the offset d being
the distance from the sample to the equilibrium position of the tip z = 0, relative
to which the oscillatory motion occurs. Due to the small amplitude assumption, we
can expand the force Fts(d + z) around the equilibrium position of the tip (z = 0,
corresponding to a tip-sample distance d) as

Fts(d + z) = Fts(d) + ∂Fts(d + z)

∂z

∣
∣
∣
∣
z=0

· z + · · · . (13.2)

If we neglect higher order terms, the force changes linearly with z, like it is the
case for a spring. Hence the influence of the tip-sample force can be described by a
spring with a spring constant k ′ equal to the negative force gradient, as

k ′ ≡ −∂Fts(d + z)

∂z

∣
∣
∣
∣
z=0

. (13.3)

The tip-sample interaction can be represented by adding a springwith spring constant
k ′ to the cantilever spring with the spring constant k, as shown in Fig. 13.2a. The two
spring constants add up3 to an effective spring constant keff = k + k ′. However, this

2The tip length is set to zero in order to avoid an additional offset length.
3Since the two springs attach to the tip from above and below one might think that this should
lead to a subtraction of the spring constants. Here we show that the spring constants indeed add
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Fig. 13.2 a For the case of small amplitudes, the cantilever-tip-sample system can be effectively
described by two springs, one representing the cantilever with force constant k and one representing
the tip-sample interaction with force constant k′. b This system is equivalent to a system with an
effective spring constant of keff = k + k′

analogy (replacing the tip-sample interaction by a spring) should not be stretched
too far, since real spring constants of springs are always positive, while a tip-sample
interaction can also have a “negative spring constant”. Such a negative spring constant
k ′ cannot be realized by a coil spring or a cantilever-shaped spring, but can exist in
a more general sense as a potential of negative curvature.

Wewill now consider a sinusoidal excitation of the cantilever base at the frequency
ωdrive and amplitude Adrive around the position of static equilibrium (zdrive = �L) as
zdrive = Adrive cos (ωdrivet). As a result of this excitation, the tip will oscillate in the
steady-state around its equilibrium position as z = A cos (ωdrivet + φ). The equation
of motion can be written, according to the treatment in Sect. 2.4 as

mz̈ + m
ω0

Qcant
ż = −k(z − zdrive − �L) + Fts(d) + ∂Fts(d + z)

∂z

∣
∣
∣
∣
z=0

· z, (13.4)

by including the offset length �L and adding the linear approximation for the tip-
sample force on the right.4 As the static force due to the bending of the cantilever
cancels out against, the force Fts (d), according to (13.1), these terms can be removed
from the equation of motion, which reads after division by m and using (13.3) as

up. As indicated in Fig. 13.2 the cantilever spring under the influence of a tip-sample force can be
approximated by a cantilever effective mass held by two springs (i.e. the cantilever spring k and
the spring k′ representing the tip-sample interaction). In static equilibrium, z = 0, the forces of
both springs compensate as Fk + Fk′ = 0. If the cantilever is moved by �z during the oscillation,
Fig. 13.2b shows that the force components relative to the forces in static equilibrium point in the
same direction for both springs and �F = �Fk + �Fk′ = −(k + k′)�z results. Thus, the spring
constants k and k′ combine to keff = k + k′.
4In the spring model the force Fts (d) can be considered arising form an offset stretch of the tip-
sample spring.



13.2 Principles of Amplitude Modulation Dynamic Atomic Force Microscopy 213

z̈ + ω0

Qcant
ż + k

m
(z − zdrive) = ∂Fts(d + z)

∂z

∣
∣
∣
∣
z=0

· z

m
= − k ′

m
z. (13.5)

After replacing k/m = ω2
0 the equation of motion reads as

z̈ + ω0

Qcant
ż + k + k ′

m
z = ω2

0zdrive. (13.6)

If we replace k + k ′ by the effective spring constant keff , the equation ofmotion (13.6)
is identical to the equation of motion of the driven damped harmonic oscillator with
damping (2.25), with the only replacement k/m → keff/m ≡ ω′2

0 . Thus, we know
the solution of (13.6) from (2.31) as

A2 = ω4
0 A

2
drive

(

ω2 − ω′
0
2
)2 + ω2

0ω
2

Q2
cant

. (13.7)

In the following, we assume that
∣
∣k ′∣∣ � k and thus ω′

0 is very close to ω0. In this case
ω0 can be replaced by ω′

0 in (13.7), which then corresponds to a resonance curve as
discussed in Sect. 2.4, with the only difference that now the resonance frequency is
ω′
0 = √

keff/m, instead of ω0 = √
k/m. Thus, the linearized tip-sample force shifts

the resonance frequency from ω0 to ω′
0. This shifted resonance frequency can be

written as

ω′
0 =

√

keff
m

=
√

k + k ′

m
=

√

k

m

(

1 + k ′

k

)

= ω0

√

1 + k ′

k
. (13.8)

Since for small x the approximation
√
1 + x ≈ 1 + 1

2 x holds, and as
∣
∣k ′∣∣ � k, the

new resonance frequency of the cantilever can be written as

ω′
0 ≈ ω0

(

1 + k ′

2k

)

. (13.9)

The shift of the resonance frequency results in

�ω = ω′
0 − ω0 ≈ ω0

k ′

2k
= −ω0

2k

∂Fts

∂z

∣
∣
∣
∣
z=0

. (13.10)

This result can be easily related to the experimentally observed frequency shift� f as

� f = ω′
0 − ω0

2π
≈ f0

k ′

2k
= − f0

2k

∂Fts

∂z

∣
∣
∣
∣
z=0

. (13.11)
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Fig. 13.3 In the small
amplitude limit, the
tip-sample force is
approximated as linear
within the range of the
oscillation and considered as
proportional to −k′. In this
figure k′ < 0 at the
tip-sample distance d, while
the cantilever spring constant
k is always positive. Thus,
the total effective force
constant k + k′ is the
cantilever spring constant k
reduced by

∣
∣k′∣∣
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Together with the resonance frequency (approximately maximum of the resonance
curve according to (2.42)) also the whole resonance curve shifts by � f .

In summary, the frequency shift of the resonance curve induced by the tip-sample
interaction is proportional to the negative gradient of the tip-sample force (−F ′

ts(d) ≡
−∂Fts(d + z)/∂z|z=0) if the following conditions are fulfilled: (a) The tip-sample
force can be approximated as linear in the range of the oscillation amplitude, and
(b) the absolute value of the tip-sample force gradient is much smaller than the
spring constant of the cantilever

∣
∣k ′∣∣ � k (the spring constant of the cantilever k

is always positive). The small amplitude limit and its interpretation in terms of the
effective spring constant is also summarized in Fig. 13.3. A Lennard-Jones type force
is shown together with the tip oscillation path with amplitude A around the average
tip-sample distance d. The cantilever force �Fcant = −kz is shown as a green line.
The tip-sample force is approximated locally around z = 0 as linear�Fts ≈ −k ′z =
∂Fts/∂z|z=0 z, which is indicated by the blue line. The dashed blue line corresponds
to the gradient of the tip-sample force at z = 0 (tangent to the force curve). The
resulting total force is shown as a red line with a slope of keff = k + k ′. Since in the
particular case considered here k ′ < 0, the spring constant of the cantilever spring
constant k is reduced by

∣
∣k ′∣∣ comparing the green and red lines.

For a positive, i.e. negative, negative-tip-sample force gradient −∂Fts/∂z = k ′ <

0, the resonance frequency will shift, according to (13.11), to lower values � f < 0,
while for a negative, i.e. positive, negative force gradient −∂Fts/∂z = k ′ > 0 the
resonance frequency will shift to higher values � f > 0. The frequency shift does
not depend on the constant static offset force Fts(d). This offset force results only
in a static deflection of the cantilever, which is compensated by an offset shift of the
cantilever base by �L , according to (13.1).

Often it is stated slightly imprecisely that the frequency shift � f is positive
(towards higher frequencies relative to f0) for repulsive forces and negative for
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Fig. 13.4 Potential, force and negative force gradient for the Lennard-Jones model potential shown
as a function of the average tip-sample distance d. As the frequency shift � f is proportional to
the negative force gradient it can be stated: For distances outside the shaded region the frequency
shift � f is positive (towards higher frequencies relative to f0) for repulsive forces, and negative
for attractive forces

attractive forces. We can understand this if we have a closer look at Fig. 13.4, where
the potential, the force, and the (negative) force gradient are shown. Here again
the Lennard-Jones potential is considered as a model for the tip-sample interaction.
The border between the repulsive and attractive regime is located at the zero of the
force (dotted line in Fig. 13.4). Correspondingly, the border between the positive
and negative force gradient is shown by a dashed line. For the largest range of tip-
sample distances, the force and the negative force gradient (green and blue curves
in Fig. 13.4, respectively) have the same sign. Only for a small range of distances
(shaded gray in Fig. 13.4) do the tip-sample force and the negative force gradient
have a different sign. As discussed above, the frequency shift � f is proportional
to the negative force gradient (13.11). Correspondingly, attractive forces (negative
sign) lead (in themajority of cases—except in the gray-shaded range) to a decrease of
the resonance frequency. Thus, the statement that the frequency shift � f is positive
(towards higher frequencies) for repulsive forces and negative for attractive forces is
true for most tip-sample distances.

The relative frequency change can be written as

� f

f0
= 1

2

k ′A2

k A2
= Einteraction

2Ecantilever
. (13.12)
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This means that the relative frequency shift is given by the ratio of the energy of the
tip-sample interaction (spring constant k ′) divided by twice the energy stored in the
cantilever oscillation (spring constant k).

13.3 Amplitude Modulation (AM) Detection Scheme
in Dynamic Atomic Force Microscopy

Wehave seen that in the small amplitude limit a force gradient of the tip-sample inter-
action shifts the resonance frequency ω0 by �ω. Accordingly, the whole resonance
curve shifts by �ω relative to that of the free cantilever, as shown in Fig. 13.5b.

In the amplitude modulation (AM) detection scheme, the cantilever is excited
with a fixed driving amplitude Adrive at a fixed frequency ωdrive close to the resonance
frequency. The resulting cantilever oscillation amplitude A is measured. As shown in
Fig. 13.5, this amplitude depends indirectly on the tip-sample distance. The amplitude

Fig. 13.5 In the AM
detection scheme of dynamic
AFM the measured signal
depends indirectly on the
tip-sample distance. a
Primarily, the force gradient
and therefore also the
resonance frequency (shift)
depend on the tip-sample
distance (here a
Lennard-Jones potential is
assumed). b Secondly, the
measured amplitude depends
on the frequency shift. c
When scanning over a step
edge, the tip-sample distance
changes until the feedback
restores the original
tip-sample distance

(d)
-F ´(d)ts

d

(a)

(b)
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d d

1
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depends on the frequency shift of the resonance curve, which depends on the force
gradient, which depends in turn on the tip-sample distance as A(�ω(F ′

ts(d))).
In the following, we go through these dependencies step by step. The dependence

of the force gradient on the tip-sample distance F ′
ts(d) based on the Lennard-Jones

model potential is shown in Fig. 13.5a. As discussed in the previous section, the
frequency shift is proportional to the force gradient indicated by the double labeling
of the ordinate in Fig. 13.5a. In Fig. 13.5b resonance curves A(ω) are shown which
are shifted together with the respective resonance frequency. The actual oscillation
amplitude of the cantilever at the driving frequency ωdrive is the measurement signal.
In the feedback loop for the amplitude signal, a setpoint amplitude is selected, e.g.
A1 in Fig. 13.5b. The feedback loop controls the measured amplitude to the setpoint
value by changing the z-position of the tip (or sample). This changes the tip-sample
distance, which changes the force gradient, which changes the resonance frequency,
and thus indirectly the amplitude is ultimately changed and kept at its setpoint value
by the feedback. If the feedback loop maintains a constant oscillation amplitude
throughout a scan, this corresponds to a height profile taken at constant force gradient.
In order for an amplitude change to be highly sensitive to the corresponding frequency
change, the amplitude setpoint should be close to the position of maximum slope of
the resonance curve.

In our example, we chose ωdrive < ω0, corresponding to a negative negative (i.e.
positive) force gradient (attractive tip-sample interaction). If a driving frequency
larger than ω0 is selected, this corresponds to a working point in the regime of a
positive negative force gradient (roughly repulsive tip-sample interaction).

Now we discuss the feedback process for the case of the tip scanning over a
step edge as shown in Fig. 13.5c. Initially, the amplitude setpoint A1 stabilizes
a frequency shiftω1 and the corresponding tip-sample distance d1 (working point 1 in
Fig. 13.5a, b). If the tip approaches the step edge, the tip-sample distance decreases
to d2. This brings the tip into a region of larger (more negative) force gradient, shift-
ing the resonance frequency by δω to ω2. This shift of the resonance frequency by
δω leads to an increase of the amplitude by δA to A2 at ωdrive (working point 2 in
Fig. 13.5a, b). The feedback acts on this deviation from the setpoint value A1 by
increasing the tip-sample distance d until the setpoint amplitude A1 is restored to d1.

In summary, a certain amplitude change corresponds to a certain resonance fre-
quency shift, which corresponds to a certain tip-sample force gradient, which corre-
sponds to a certain tip-sample distance A(�ω(F ′

ts(d))). Therefore, keeping the feed-
back loop at a constant oscillation amplitude corresponds to establishing a constant
average tip-sample distance d. An image scanned at constant tip-sample distance is
called the topography. However, this assignment is only true if the same dependence
of the frequency shift on the tip-sample distance (Fig. 13.5a) is present all over the
surface.

Let us now consider scanning over a border with two different dependencies of
the frequency shift as a function of tip-sample distance as shown in Fig. 13.6. This
will lead to an apparent height contrast even if the actual height of the atoms in both
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Fig. 13.6 a A scan from a region with material A to a region with material B can lead to a
different apparent tip height in atomic force microscopy. b This arises due to the different force
gradient-distance curves present in the two regions. For another force gradient-distance curve (C)
an instability will occur due to the different sign of the slope of the force gradient, i.e. due to the
non-monotonous dependence of the force gradient on the tip-sample distance

areas is the same. Initially the tip is in region Awith the corresponding force gradient
dependence shown in Fig. 13.6b. The setpoint frequency ω1 stabilizes the tip-sample
distance to dA (working point 1). If by lateral scanning the tip crosses the border
from A to B, the force gradient curve B in Fig. 13.6b applies, resulting in a different
frequency shift ω2 (working point 2). The feedback restores the setpoint frequency
ω1 by reducing the tip-sample distance, however, now the force-distance behavior
of material B (blue curve) applies, resulting in a tip-sample distance dB (working
point 3). This leads to a reduced apparent height dB during imaging and results an a
material contrast between materials A and B.

While the assumed force gradient curve B resulted in a different apparent height
in region B, more severe cases are also possible. Let us now assume the extreme
case of the force gradient curve C in Fig. 13.6b. This case will lead to a jump to
the working point 4 when the tip enters region C. At this working point the force
gradient-distance curve has a negative slope and thus the feedback works in the
wrong direction: The feedback will reduce the tip-sample distance in order to try to
restore the larger (more negative) frequency shift setpoint. While this direction of
feedback was the right one for a positive slope of the force gradient curve, it is the
wrong feedback direction for the opposite slope at working point 4. The feedback
will constantly reduce the tip-sample distance, leading to a tip crash. This shows that
the non-monotonous dependence of the force gradient on the distance can lead to
serious instabilities.
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13.4 Experimental Realization of the AM Detection Mode

A scheme of the experimental setup for the amplitude modulation AFM detection
is shown in Fig. 13.7. The sinusoidal driving signal at the fixed frequency ωdrive is
generated by an oscillator. This signal excites the piezoelectric actuator driving the
cantilever base, which results in turn in a cantilever oscillation amplitude A, which
is, since it is close to resonance, much larger than the excitation amplitude. If tip
and sample approach each other, the oscillation amplitude at the fixed excitation
frequency ωdrive will change due to a shift of the resonance frequency induced by the
tip-sample interaction, as discussed in the previous section. The cantilever deflec-
tion (sinusoidal signal) is measured, for instance, by the beam deflection method as
indicated in Fig. 13.7. The signal from the split photodiode is converted by the pream-
plifer electronics to a voltage signal proportional to the cantilever deflection. This
signal is an AC voltage signal at the frequency ωdrive with an amplitude proportional
to the cantilever oscillation amplitude A.

Using a lock-in amplifier (described in Chap.6), the amplitude of the AC signal
at frequency ωdrive is measured. The lock-in amplifier needs the driving signal as
a reference signal. At the output of the lock-in amplifier, a quasi-DC signal of the
amplitude is obtained.5

This quasi-DC amplitude signal (demodulated from theAC signal atωdrive) is used
as the input signal for the z-feedback controller. The measured cantilever amplitude
is compared to the setpoint amplitude. The controller determines an appropriate z-
signal need tomaintain a constant oscillation amplitude.Via the quite indirect relation
between oscillation amplitude and tip-sample distance, maintaining a constant oscil-
lation amplitude corresponds to maintaining a constant tip-sample distance. Thus,
the z-feedback signal is used as the height signal, mapping the topography during
data acquisition.

In the following, we describe the demodulated signal and the reaction of the
feedback in more detail by considering the example of a scan over a step edge in the
topography, as shown in Fig. 13.8 (see also Fig. 13.5c). As a starting condition, we
assume that before scanning over a step edge the amplitude is nicely kept closely
to the amplitude setpoint value A1. When the step is approached laterally, the tip-
sample distance will decrease from d1 to d2. This leads, as discussed in the last
section, to a deviation of the oscillation amplitude from A1 to A2 which is measured
as the demodulated amplitude signal at the output of the lock-in amplifier. Thus,
this quasi-DC amplitude signal contains the deviations from the setpoint amplitude
(due to the topography of the surface) before they are compensated by the feedback.
Subsequently, this measured amplitude A2 enters as input signal to the feedback

5Technically the driving signal can be considered as a carrier signal which is modulated by a low-
frequency (quasi-DC) amplitude signal (deviations from the desired amplitude setpoint due to the
sample topography). Then the task of the lock-in amplifier is the demodulation of the low frequency
amplitude signal. The term AM demodulation is traditionally used in connection with the audio
signal detection/demodulation in AM radio receivers. This is the reason why the term AM detection
is used for this detection scheme.
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Fig. 13.7 Experimental setup for the AM detection scheme using a lock-in amplifier to detect the
deviation of the oscillation amplitude from the setpoint value

Fig. 13.8 Demodulated
amplitude signal A (red) and
tip oscillation signal z as
function of time when
scanning over a topographic
feature, e.g a step edge. The
build-up of the amplitude
signal and the reaction of the
feedback are shown as
sequential, while in reality
they occur simultaneously
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controller and deviations from the setpoint amplitude A1 are compensated by the
feedback which adapts the z-signal to a value equivalent to the step height. After
this, the setpoint oscillation amplitude A1 corresponding to the tip-sample distance
d1 is recovered.

A lock-in amplifier can also provide a phase signal, the difference between the
phase of the cantilever oscillation and the phase of the driving signal. During a scan
of the surface topography the phase signal can be recorded as free signal (i.e. not used
for the feedback). This phase signal contains useful information on the tip-sample
interaction, as we will discuss in Chap.14.

The setup shown in Fig. 13.7 can also be used to record the resonance curve of the
free cantilever not in contact with the sample. This is done by disabling the feedback
and ramping the driving frequency over the resonance frequency, while measuring
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the oscillation amplitude and the phase. The measurement of the resonance curve
allows to determine parameters like the resonance frequency ω0, the Q-factor, and
the amplitude at the resonance frequency A(ω0) = Afree. The value of ω0 is needed
to chose the driving frequency and Afree is needed to choose a proper amplitude
setpoint.

A certain minimal detectable amplitude change in AM detection translates via
the slope of the resonance curve to a minimal detectable frequency shift and finally
to the resolution obtained for the tip-sample distance. The larger the slope of the
resonance curve, the smaller the frequency shifts that can be detected for a given
minimal detectable amplitude change. The slope of the resonance curve increases
with increasing Q-factor. Thus, in AM detection the sensitivity for the detection
of a frequency shift increases for higher Q-factors. However, as we will see in the
following section, high Q-factors lead in the AM detection scheme to unacceptably
long time constants (low bandwidth). Due to this the AM detection scheme is not
used for cantilevers with Q-factors larger than about 500.

13.5 Time Constant in AM Detection

The time constant for AM detection can be obtained by analyzing the solution of the
equation of motion for the driven damped harmonic oscillator (2.25). The change
of the motion z(t) in reaction to a changed tip-sample interaction can be modeled
by an (instantaneous) change of the resonance frequency of the harmonic oscillator
from ω0 to ω′

0. Either a numerical solution of the equation of motion or an analytical
solution can be analyzed.

According to Sect. 2.5 the analytic solution of the equation of motion of the driven
damped harmonic oscillator after a change of the resonance frequency at time t = 0
can be written as

z(t > 0) = A′ cos(ωdrivet + φ′) + Ge−ω′
0t/(2Q) cos(ωhomt + φ). (13.13)

The first term corresponds to the new steady-state oscillation at the driving frequency
ωdrive under the influence of the shifted resonance frequencyω′

0. The new steady-state
amplitude A′ and phase φ′ are given by (2.32) and (2.35), respectively, replacing ω0

byω′
0. The second term in (13.13) corresponds to an exponentially decaying transient.

G and φ are determined by the initial conditions and ωhom is introduced in Sect. 2.2
and Sect. 2.5.

In Fig. 13.9a the envelope of the cantilever deflection z(t) is plotted as a function of
time for aQ-factor of 100, a resonance frequency f0 = 150kHz, and an instantaneous
increase of the resonance frequency by� f = f0 − f ′

0 = 1319Hz at time zero.6 The
envelope of the cantilever deflection z(t) is plotted, since a single oscillation is not

6This value for the frequency shift was chosen as it leads to half of the original amplitude in the
steady-state.
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Fig. 13.9 The envelope of
the oscillation amplitude (a)
and the phase (b) in reaction
to a change of the resonance
frequency from ω0 to ω′

0 at
time t = 0. The amplitude
and phase response show
that, after a transient, the
new steady-state amplitude
and phase are reached after
about Q oscillations
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visible on the time scale shown. The transient to the new steady-state amplitude is
characterized by exponential behavior and a strong beat term. The new steady-state
amplitude of half of the original amplitude is reached after about Q/π oscillations,
corresponding to a time τ ≈ Q/( f ′

0 π) = 0.2ms (cf. (2.43)). This time constant still
allows for sufficiently fast scanning speeds in AFM scanning.

InFig. 13.9b the timedependence of the phase is shown.Thephasewas determined
from the cantilever deflection z(t) numerically simulating a lock-in detection. Similar
to the amplitude, also the phase reaches its new steady-state value after a transient
of about Q/π oscillations.

For the case of a high Q-factor of 10,000, the time constant τ is 100 times larger,
leading to unacceptably long scanning times when using cantilevers with a large Q-
factor (i.e. in vacuum) in the AM detection mode. When the tip-sample interaction
changes quickly, for instance during a fast scan over a sharp step edge, it takes
roughly the time τ before the corresponding tip oscillation amplitude changes to
its new steady-state value, corresponding to the new tip-sample distance. In the
transient time until the new amplitude has been established a false amplitude enters
into the feedback loop, which does not yet correspond to the actual new tip-sample
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distance. Thus, only after this settling time should the tip be moved on to the next
measuring point. For cantilevers with a high Q-factor this results in an unacceptably
long scanning time. Therefore, AMdetection is not used for high Q cantilevers (i.e. in
vacuum). For high Q cantilevers a different detection scheme (FM detection) is used,
whichwill be discussed in Chap.16. TheAMdetection scheme is used for cantilevers
at ambient conditions, where the quality factor is less than several hundred due to
dissipative damping in air.

The same conclusion about the time response of a harmonic oscillator can alter-
natively to the analysis of the equation of motion also be derived from an energy
consideration. The energy which can be supplied by external driving to a harmonic
oscillator per cycle can according to (2.44) be expressed as 2πEosc/Q. Therefore, it
takes the time of about Q oscillations to change the oscillation state of the harmonic
oscillator substantially (e.g. to decrease the amplitude to one half). The larger the
Q-factor is, the smaller is the influence of the driving and the closer becomes the
behavior of the driven oscillator to that of a free harmonic oscillatorwithout damping.

13.6 Dissipative Interactions in the Dynamic AM Detection
Mode

Up to now we have considered the AM detection method in the limit where the
tip-sample interaction is conservative. As discussed, a conservative tip-sample inter-
action induces a shift of the resonance frequency of the cantilever. In this section, we
will consider a model which includes dissipative tip-sample interactions in a crude
way. To keep things simple, we will still deal with the small amplitude limit, i.e. an
expansion of the tip-sample force up to the linear order is sufficient.

In the treatment of the harmonic oscillator in Chap.2, dissipation was included
by the Q-factor. The types of dissipative forces included via the Q-factor are forces
proportional to the velocity, e.g. energy losses (damping) of a cantilever oscillating
in air or a liquid. This cantilever dissipation energy Ediss

cant per cycle leads according
to (2.44) to a corresponding Q-factor Qcant ∝ 1/Ediss

cant. An additional dissipative tip-
sample interaction is associated with a dissipated energy of Ediss

ts per cycle and a
corresponding Q-factor Qts can be assigned. As the dissipation energies add up to a
total dissipation energy, the inverse Q-factors add up to an effective Q-factor as

Ediss
tot = Ediss

cant + Ediss
ts ∝ 1

Qcant
+ 1

Qts
≡ 1

Qeff
. (13.14)

To take a dissipative interaction into account via the corresponding Q-factor is a
realistic model for a velocity dependent force, like damping in air. For a dissipative
tip-sample interaction this treatment becomes questionable. Nevertheless, we will
now consider the dissipative tip-sample interaction via the effective Q-factor, since
in this case we can still use the previously derived equations for the amplitude and
the phase (2.32) and (2.35) of a driven damped harmonic oscillator, respectively.
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We use the effective quality factor and replace the resonance frequency of the free
cantilever ω0 by the shifted resonance frequency ω′

0 ≈ ω0 + ω0k ′/(2k), according
to (13.9). In order to avoid too many subscripts we identify ω ≡ ωdrive. With this
the amplitude and phase read as a function of the driving frequency ω, according to
(2.32) and (2.35) as

A2 = A2
drive

[

1 −
(

ω
ω′
0

)2
]2

+ 1
Q2

eff

(
ω
ω′
0

)2
, (13.15)

and

tan φ = −ω′
0ω

Qeff
(

ω′2
0 − ω2

) =
− ω

ω′
0

Qeff

[

1 −
(

ω
ω′
0

)2
] , (13.16)

respectively.
In the following, we show that in AM detection it cannot be distinguished whether

a conservative interaction (leading to a frequency shift) or a dissipative interaction
(leading to a different Q-factor) is the reason for a certain measured amplitude
change. We consider in the following the two limiting cases of only conservative
interaction or only dissipative interaction.

In Fig. 13.10a the amplitude and phase for a free cantilever (blue curve: ω0, Qcant)
are compared to the case in which a conservative tip-sample interaction is included
(red curve: ω′

0, Qcant). In this case, the conservative tip-sample interaction leads to a
shift of the whole resonance curve.7 Due to the constant quality factor, the amplitude
and shape of the resonance curve and phase curve do virtually do not change. This
shift of the resonance curve and phase curve leads to a different amplitude and phase
measured at the (fixed) driving frequency ω = ωdrive, as indicated by the vertical
line in Fig. 13.10a. In this figure, the driving frequency was selected to be somewhat
lower than ω0.

The opposite assumption is that only the damping changes and the resonance
frequency stays constant (ω0, Qeff ). In this case, the frequency at which the maximal
amplitude of the resonance curve occurs stays approximately constant very close
to ω0 with and without interaction (Fig. 13.10b), while the resonance curve and the
phase as a function of frequency become broader with increasing damping (lower
quality factor) as shown by the green curve in Fig. 13.10b. This leads to a reduced
amplitude and also to a change of the phase shift at the driving frequency (vertical
line in Fig. 13.10b).

As in theAMdetectionmode only the amplitude ismeasured, during scanning it is
not possible to distinguish whether an amplitude change occurs due to a conservative
interaction (resonance frequency shift due to topography) or due to a dissipative
interaction (change of the Q-factor due to material properties). Both lead to a change

7The curves in Fig. 13.10 are plotted using (13.15) and (13.16). While the resonance curves for
two different resonance frequencies do not exactly correspond to a shift of the resonance curve,
Fig. 13.10a shows that these curves correspond to a very good approximation to a shift.
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Fig. 13.10 a Amplitude and phase for a free cantilever (blue curve) compared to the case with
a conservative tip-sample interaction included (red curve). The two resonance curves as well as
the phase curves are shifted with respect to each other by �ω. b Amplitude and phase for a free
cantilever compared to the case with a dissipative tip-sample interaction included (green curve),
i.e. the effective quality factor decreases, while the resonance frequency stays constant. In both
cases (a) and (b) the oscillation amplitude at ωdrive is reduced by the same amount, which makes
it impossible to distinguish between a conservative and a dissipative interaction during scanning in
the AM detection mode based on a measurement of the amplitude
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of the amplitude at the driving frequency. It is not known whether an initial change
of A during a scan (later compensated by the feedback loop) arises due to a change
of ω0 or Q.

The dependence of the amplitude on Qeff can lead to a material contrast. If in
two laterally adjacent areas the true height of the two different materials as well as
the conservative tip-sample interactions are the same, different damping (different
Qts) occurring due to the two different materials can lead to a different oscillation
amplitude, which results, after restoration of the amplitude by the feedback, in an
apparent height difference between the two materials due to the different tip-sample
dissipation.

If both A and φ were measured (during scanning) it is in principle possible to
use these two measured values and invert (13.15) and (13.16) for ω′

0 and Qeff . Since
(13.15) and (13.16) are a rather complicated to solve, alternatively the complete
resonance curves of amplitude and phase (like the ones shown in Fig. 13.10) can
be measured in a spectroscopic type of measurement. The frequency shift can then
be obtained from the position of the maximum in the amplitude or the frequency at
which the phase is −90◦. The damping Qeff can be determined from the width of the
resonance curve in amplitude or phase. All thesemeasurements have to be performed
without feedback and therefore require high stability (i.e. low drift). Further, these
parameters can be obtained as a function of the tip-sample distance d at a specific
location on the surface.

13.7 Dependence of the Phase on the Damping
and on the Force Gradient

Generally, the dependence of the phase on the damping and on the force gradient is
contained in (13.16). From Fig. 13.10, we can see that the dependence of the phase as
function of frequency can be approximated as linear close to the (shifted) resonance at
ω′
0 orω0 at which φ = −90◦ (e.g. dotted line in Fig. 13.10a). In the following, wewill

derive this linear relation betweenphase and frequency for small frequencydeviations
δω relative to ω′

0. Using in the nominator of (13.16), the approximation ω′
0 ≈ ω0 and

in the denominator the approximation ω′
0 + ω ≈ 2ω, as well as subsequently the

relation δω = ω − ω′
0, results in

tan φ = −ω′
0ω

Qeff
(

ω′2
0 − ω2

) ≈ −ω0ω

Qeff
(

ω′
0 + ω

) (

ω′
0 − ω

) ≈ ω0

2Qeffδω
. (13.17)

Close to the resonance, the phase will be close to −90◦ and the deviation from this
value will be termed the phase shift δφ with φ = −π/2 + δφ. The arctan can be
approximated in this case as arctan x ≈ −π/2 − 1/x , resulting in

φ = −π

2
+ δφ = arctan

(
ω0

2Qeffδω

)

≈ −π

2
− 2Qeff

ω0
δω. (13.18)
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Thus, the phase shift δφ relative to the phase −90◦ results as

δφ = −2Qeff

ω0
δω. (13.19)

This equation can be used for the conversion between the frequency shift and the
phase shift close to resonance.

If driving is performed at the free resonance frequencyω0 (as will be considered in
detail in the following chapter) and if we consider the phase shift due to the frequency
shift induced by the tip-sample interaction �ω, then δω becomes �ω and (13.17)
can be written using (13.10) as

tan φ ≈ ω0

2Qeff�ω
≈ k

Qeffk ′ . (13.20)

The phase shift at ω0 due to the tip-sample interaction results in the linear approxi-
mation according to (13.19) as

�φ = −2Qeff

ω0
�ω = Qeffk ′

k
= −Qeff

k

∂Fts

∂z

∣
∣
∣
∣
z=0

. (13.21)
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Fig. 13.11 Shift of the resonance curves (amplitude and phase) under the influence of a force
gradient F ′ due to the tip-sample interaction
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The phase shift depends linearly on both the effective quality factor and the force
gradient of the tip-sample interaction. Since the phase depends on �ω and Qeff in a
different way than the amplitude (cf. the arrows in Fig. 13.10 and (13.15)), the phase
recorded as a free signal (not used for the feedback) can result in a different contrast
(phase contrast) than the amplitude signal.

According to (13.21), the sign of the force gradient determines the sign of the
phase shift at ω0, since Qeff is always positive. For attractive forces (more precisely,
positive force gradients) the phase is more negative than −90◦ (φ < −90◦), and
correspondingly for repulsive forces (negative force gradients) the relationφ > −90◦
holds for the phase.

As a graphic summary we show in Fig. 13.11 the resonance curves for amplitude
and phase (according to (13.15) and (13.16)) for a driven damped harmonic oscillator
under the influence of an external force gradient F ′ which shifts the resonance curve
A(ω) and the phase behavior φ(ω).

13.8 Summary

• If the tip oscillation amplitude is small, the tip-sample interaction can be described
by a second spring with small spring constant k ′ acting between tip and sample
additionally to the cantilever spring k. The spring constant k ′ is given by the
negative force gradient of the tip-sample interaction.

• The frequency shift of the resonance frequency under the influence of a conserva-
tive tip-sample interaction is given by

�ω = ω0
k ′

2k
= −ω0

2k

∂Fts(d + z)

∂z

∣
∣
∣
∣
z=0

. (13.22)

This equation holds if the tip-sample force can be approximated as linear within
the range of the oscillation amplitude and if

∣
∣k ′∣∣ � k.

• Roughly, the frequency shift�ω is positive (towards higher frequencies) for repul-
sive forces and negative for attractive forces.

• In the amplitude detection mode (AM), the cantilever is driven at a fixed frequency
and amplitude. The oscillation amplitude (and phase) ismeasured using the lock-in
technique and used as the feedback signal.

• The measured oscillation amplitude depends on the frequency shift of the
resonance curve induced by the force gradient of the tip-sample interaction, which
in turn depends on the tip-sample distance A(�ω(F ′

ts(d))). Feedback on constant
oscillation amplitude corresponds to constant frequency shift and finally constant
tip-sample distance.

• The non-monotonous dependence of the frequency shift on the tip-sample distance
can lead to instabilities in the feedback behavior.
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• Ameasured change of the amplitude (phase) during imaging in the AMmode can
be induced by a frequency shift (conservative interaction) as well as by a change
in quality factor (dissipative interaction).

• The phase shift close to the resonance is proportional to the frequency shift as
δφ = − 2Qeff

ω0
δω. Thus, the phase shift depends linearly on Qeff and the force gra-

dient.

References

1. G. Binnig, C.F. Quate, Ch. Gerber, Atomic force microscope. Phys. Rev. Lett. 49, 57 (1982).
https://doi.org/10.1103/PhysRevLett.56.930

2. Y. Martin, C.C. Williams, H.K. Wickramasinghe, Atomic force microscope force mapping and
profiling on a sub 100 Å scale. J. Appl. Phys. 61, 4723 (1987). https://doi.org/10.1063/1.338807

3. R. Garcia, Amplitude Modulation Atomic Force Microscopy, 1st edn. (WileyVCH, Weinheim,
2010). https://doi.org/10.1002/9783527632183. ISBN:9783527408344

https://doi.org/10.1103/PhysRevLett.56.930
https://doi.org/10.1063/1.338807
https://doi.org/10.1002/9783527632183


Chapter 14
Intermittent Contact Mode/Tapping
Mode

While the previous chapter was aimed at providing a basic understanding of dynamic
atomic force microscopy, we turn now to the intermittent contact mode (or tapping
mode) which is the mode that is used most frequently at ambient conditions. In the
intermittent contact mode the oscillation amplitude is large compared to the range
of the tip-sample force and ranges from large distances with negligible tip-sample
interactions deep into the repulsive regime. For these large oscillation amplitudes,
the linear approximation of the tip-sample force used so far in the AM mode is no
longer valid. Due to this, the harmonic oscillator becomes an anharmonic oscillator
and an analytical solution of the equation of motion becomes difficult. Wewill derive
general dependencies (for instance via the law of energy conservation) or we use the
results from numerical solutions of the equation of motion. We will see that the
resonance curve of an anharmonic oscillator is very different from the usual case
of a harmonic oscillator. Thus, concepts used for the harmonic oscillator like the
frequency shift of the resonance curve cannot be directly applied to the intermittent
contact mode.

While operatingwithmuch larger amplitudes, the tappingmode has similarities to
the AMdetectionmode discussed in Chap. 13. In bothmodes the cantilever is excited
at a fixed driving frequency and themeasured quantity is the oscillation amplitude. In
the tapping mode, the amplitude depends monotonously on the tip-sample distance,
which avoids instabilities in the feedback control of the tip-sample distance. Finally,
we discuss how the dissipative tip-sample interactions are related to the phase of the
oscillation in the intermittent contact mode.

14.1 Dynamic Atomic Force Microscopy with Large
Oscillation Amplitudes

In the intermittent contact mode, the oscillation amplitude is quite large (typically
several tens of nanometer) and cantilever force constants of typically several tens of
N/m are used. As the name intermittent contact mode suggests, the tip comes into
intermittent contact with the sample, which leads to very strong short-range force
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contributions close to the sample. In tapping mode, the constant driving frequency is
usually selected at or very close to the resonance frequency of the free cantilever (not
at maximum slope, as in the AM slope detection mode cf. Sect. 13.3). The measured
signal is the amplitude A, which contains information on the average tip-sample
distance d. In order to maintain an oscillation of the tip, snap-to-contact has to be
prevented, which is possible when using large oscillation amplitudes, as discussed
in Sect. 10.5.

First we consider a purely conservative tip-sample interaction, i.e. the only dissi-
pation present is the (air) damping of the cantilever described by the corresponding
Q-factor. In a later section also dissipative tip-sample interactions will be included.
Figure14.1 shows the tip-sample force Fts and the cantilever force as a function of
the momentary tip-sample distance d + z. The average tip-sample distance is d, i.e.
z = 0. In most of the amplitude range 2A the tip-sample force is negligible and the
sum of the tip-sample force and the spring force is linear with z. However, close
to the lower turnaround point (lowest z-value) strong deviations from linear force-
distance behavior occur due to the strong repulsive tip-sample force. Due to this
strongly non-linear force-distance behavior we do no longer use the approximation
for a harmonic oscillator. Accordingly, we cannot use the concept of the frequency
shift of the whole resonance curve introduced in the previous chapter.

At large tip-sample distances the tip oscillates at its free resonance frequency
ω0 with its (large) free resonance amplitude Afree. When the tip is brought towards
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Fig. 14.1 Force-distance dependence of the cantilever force (straight green line), the tip-sample
force (blue line), and the total force (red line) as a function of the momentary tip-sample distance
d + z. In tapping mode, the range of the amplitude 2A is so large that it extends from almost zero
tip-sample force at the upper turning point to deep in the repulsive regime at the lower turning point.
The total force displays non-linear behavior corresponding to an anharmonic oscillator; in spite of
this the oscillation path is still very close to sinusoidal
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the surface, it will eventually reach the repulsive interaction regime and it might be
assumed that the trajectory of the oscillation should deviate strongly froma sinusoidal
shape due to the very strong repulsive force. However, it appears (experimentally [1]
and from simulations [2]) that the oscillation trajectory can still be approximated
with very high precision as a sinusoidal shape. This sinusoidal oscillation is an
important fact in understanding the tapping mode. While the form of the oscillation
stays sinusoidal even in a strongly anharmonic potential, the amplitude changes due
to the strong repulsive interaction.

As an example, the oscillation traces for twodifferent average tip-sample distances
d are shown in Fig. 14.2a, when operation is performed in constant height mode, i.e.
without feedback, restoring an amplitude setpoint. It was found experimentally [1]
and also from simulations [2] that the oscillation amplitude reduces approximately
linearly with decreasing average tip-sample distance d, once the oscillation path
reaches the repulsive regime, as shown in Fig. 14.2b. Actually, a slope of one (i.e.
A ≈ d) is usually observed due to the short range repulsive force. In tapping mode
detection, a certain amplitude A (corresponding to the average tip-sample distance
d ≈ A) is chosen as the amplitude setpoint for the z-feedback. If the tip-sample
interaction is approximated as a hard wall, a closed form (linear) expression for the
oscillation amplitude as function of the tip-sample distance is obtained [2].

One reasonwhy the tappingmode is so popular is that the dependence between the
measured signal (oscillation amplitude) and the tip-sample distance is monotonous.

Oscillation
amplitude

0
d

1

3

2

1

3

2

(a)

(b)
Afree
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A

Fig. 14.2 a Schematic of the tip oscillation for two different average tip-sample distances dA
and dB . The oscillation remains sinusoidal also at reduced distances d. b The vibration amplitude
(being the free amplitude Afree for large tip-sample distances) decreases with decreasing tip-sample
distance d, once the oscillation path reaches the repulsive range, i.e. d < Afree
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This allows for a robust feedback signal and avoids the possibility of instabilities
which can occur if the measured signal depends on the tip-sample interaction in a
non-monotonous way (cf. Sects. 13.3 and 16.3).

In the following,wewill provide a semi-quantitative explanation for the amplitude
reduction if the oscillation enters the regime of strong (repulsive) interaction. No
dissipative tip-sample interaction is needed in order to explain the reduced oscillation
amplitude. The amplitude reduction can be understood within the model of a driven
oscillator (not harmonic).

Wewill discuss the energy flow supplied to the oscillator by the driving oscillation
with amplitude Adrive. Initially, the tip-sample distance is large, and we assume that
the oscillator is driven at its free resonance frequency ω0. This leads to an oscillation
with the resonance amplitude Afree = QAdrive. At the resonance, the phase between
the driving oscillation and oscillator motion is −90◦ resulting in a maximal energy
transfer from the excitation to the oscillation. Due to a tip-sample interaction in the
intermittent contact mode (assumed to be conservative) the phase of the oscillation
will deviate from its value of −90◦ for the free cantilever, leading to a reduced
amplitude. Off-resonance the energy transfer from the external excitation to the
oscillator is (much) less efficient resulting in a reduced oscillation amplitude. Let us
consider this idea in a more quantitative manner.

Due to the strong effects of anharmonicity in the tapping mode, we do not use
any of the results previously obtained for the harmonic oscillator, e.g. shape of
the resonance curve, phase curve, or the concept of frequency shift of the whole
resonance curve. The following analysis of the driven anharmonic oscillator is very
general, only relying on (a) the (experimentally proven) assumption of a sinusoidal
oscillation and (b) on the general law of energy/power conservation. We consider a
driven damped oscillator with the cantilever base (or the driving piezo) oscillating
as zdrive = Adrive cos (ωt). The resulting sinusoidal motion of the tip relative to its
equilibrium position d can be written in the steady-state as z = A cos (ωt + φ). The
average power supplied by driving the cantilever base can be written as

〈Pdrive〉 = 〈F · żdrive〉 = 1

T

T∫

0

k [zdrive (t) − z (t)]żdrive (t) dt. (14.1)

Since all the functions in the integral are simple harmonic functions, the integral can
be solved analytically, resulting in

〈Pdrive〉 = −1

2
k AdriveAω sin φ. (14.2)

This expression is valid very generally, it is not necessary to assume that the driving
frequency ω is close to the resonance frequency. It can be seen that the maximum
power is delivered if the phase is −90◦. This power supplied will be dissipated by
the (air) damping of the cantilever Qcant (since we assumed a purely conservative
tip-sample interaction).
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If we further consider that the energy stored in the oscillator close to resonance is
Eosc ≈ 1/2 k A2, and the energy supplied by the driving and then dissipated during
one cycle is Edrive = 〈Pdrive〉 T , the quality factor Qcant can (according to (2.44)) be
written as

Qcant = 2π
Eosc

Edrive
= −A

Adrive sin φ
. (14.3)

If we identify the oscillation amplitude of the free cantilever (without any tip-sample
interaction) as Afree = QcantAdrive, the oscillation amplitude can be written as

A = AdriveQcant sin(−φ) = Afree sin(−φ) (14.4)

and thus
A

Afree
= sin(−φ). (14.5)

This shows that the amplitude decreases as the phase deviates from the resonance
case −90◦ due to a tip-sample interaction. The energy from the excitation (driving)
can no longer be effectively transferred to the oscillating cantilever. A change of the
resonance condition due to a conservative tip-sample interaction leads to an excitation
(driving) of the oscillator off-resonance and reduces thus the amplitude.

The dependence of the phase φ on the amplitude A/Afree according to (14.5) is
shown in Fig. 14.3. This result, should be consistent with the specific result obtained
for the harmonic oscillator. At the first sight it is not obvious that the resonance
curve A(ω) and phase curve φ(ω) of the harmonic oscillator lead to (14.5). However,
we can derive an expression φ(A/Afree) from (2.32) and (2.35) by eliminating the
dependence on ω, and (14.5) results.1

FromFig. 14.3we see that an oscillationwith a certain amplitude A can be realized
at two different phases, lower and higher than the phase of the free cantilever at
resonance, i.e. −90◦. In the following we will show that φ < −90◦ corresponds to
a net attractive tip-sample force, while φ > −90◦ corresponds to a net repulsive
tip-sample force.

We start from the equation of motion for the driven damped harmonic oscillator
(2.25) and include the static deflection introduced in Fig. 13.1, as well as the tip-
sample force. The anharmonicity enters by using the full anharmonic tip-sample
force Fts, instead of the linear approximation. This results in

mz̈ = − mω0

Qcant
ż − k(z − (zdrive + �L)) + Fts(d + z). (14.6)

1The phase φ(A/Afree) can be obtained numerically from (2.32) and (2.35). If this result is plotted
in Fig. 14.3 it is indistinguishable on top of the curve obtained from (14.5). Alternatively (2.32) and
(2.35) can be rearranged analytically leading to (14.5) in a very good approximation.
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Fig. 14.3 Dependence of the amplitude on the phase according to (14.5). This expression is obtained
from energy conservation and the assumption of a sinusoidal oscillation. For a given amplitude
A/Afree, the phase can have two different values. φ < −90◦ corresponds to a net attractive tip-
sample force, while φ > −90◦ corresponds to a net repulsive tip-sample force. The dotted curve
results for a dissipative interaction and will be considered later

For simplicity, we consider the driving frequency at the resonance frequency of
the free cantilever, ωdrive = ω0. Thus zdrive = Adrive cosω0t . The resulting cantilever
oscillation z is assumed to be sinusoidal. In a more general treatment z(t) can be
written as a Fourier series including multiples of the oscillation frequency [3, 4].
Throughout this text we consider only the first term of this Fourier expansion and
the cantilever oscillation z and its time derivatives can be written as

z = A cos (ω0t + φ) , (14.7)

ż = −ω0A sin (ω0t + φ) , (14.8)

z̈ = −ω2
0 A cos (ω0t + φ) = −ω2

0z. (14.9)

If we insert this into (14.6), the following equation results

− mω2
0z = mω2

0 A

Qcant
sin (ω0t + φ) − k(z − �L) + Fts(d + z) + k Adrive cos (ω0t) .

(14.10)
Since mω2

0 = k, the term on the left side of (14.10) cancels out the term −kz on
the right side. Instead of solving the equation of motion (which is difficult due to
the non-linear dependence of Fts(d + z)), we will perform a kind of averaging over
(14.10) in order to derive a useful expression between the relevant quantities. We
multiply (14.10) by A cos (ω0t + φ) and integrate over one period. It can be seen
form the symmetry of the expressions that the first and the second term on the right
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side are zero aftermultiplication and integration over one period. Thus, the remaining
equation reads as

A

T∫

0

Fts(d + z) cos (ω0t + φ) dt = −k AAdrive

T∫

0

cos (ω0t) cos (ω0t + φ) dt .

(14.11)

The integral on the right side results as 1/2T cosφ. Thus (14.11) can be written
as

1

T

T∫

0

Fts(d + z)A cos (ω0t + φ) dt ≡ 〈Fts · z〉 = −1

2
k AAdrive cosφ. (14.12)

If we finally use Afree = QcantAdrive, the cosine of the phase results as2

cosφ = −2Qcant

k AAfree
〈Fts · z〉 . (14.13)

When analyzing this equationwe have to consider that z is negative in the rangewhere
Fts is different from zero (i.e. close to the lower turnaround point), cf. Fig. 14.1. Thus,
an attractive (negative) force will lead to a positive 〈Fts · z〉 and finally via (14.13)
to a phase φ < −90◦. Correspondingly, a repulsive force Fts > 0 leads to a phase
φ > −90◦. If 〈Fts · z〉 = 0 this leads to the resonance phase of φ = −90◦.

Generally, during one oscillation cycle, attractive as well as repulsive interactions
will be “visited” by the tip. The terms “net attractive” or “net repulsive” force cor-
respond to 〈Fts · z〉 being positive or negative, respectively. If we have our working
point in the tapping mode at a certain amplitude, but if we do not know whether this
corresponds to the net attractive or repulsive regime, we can use the phase in order to
obtain this important information, as also indicated in Fig. 14.3. In this way, the mea-
surement of the phase provides an unambiguous distinction between net attractive
and net repulsive interactions.

14.2 Resonance Curve for an Anharmonic
Force-Distance Dependence

The results in the previous section were obtained using very general considerations,
either energy considerations, or integration over the equation of motion. Alterna-
tively, the equation of motion for an anharmonic oscillator can be solved. This can

2If we approximate the tip-sample force by Fts = −k′z (harmonic oscillator), 〈Fts · z〉 = −1/2 k′A2

results (cf. (16.10)). Inserting this into (14.13) and remembering that according to (14.5) A/Afree =
− sin φ, the following expression for the phase is obtained tan φ = k/(k′Qcant), which corresponds
to expression (13.20) obtained for the harmonic oscillator.
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Fig. 14.4 a Resonance curve of an anharmonic oscillator (solid line) for a fixed average tip-sample
distance d = d0, compared to the free oscillation (dashed gray curve). For an anharmonic interaction
the resonance curve becomes multivalued. The low-amplitude branch is shown in red and the high-
amplitude branch in green. b The oscillation ranges corresponding to the regions a − d of the
resonance curve (a) are indicated in a plot of the force-distance curve

be attempted either analytically [5], or by evaluating the solution of the equation
of motion numerically for a particular model of the tip-sample force [6]. If the tip
approaches the sample, the anharmonicity increases and the resonance curve evolves
from the well-known form, indicated as dotted gray line in Fig. 14.4a, to odd shapes,
for instance that shown in color in Fig. 14.4a.

One of the main differences between a harmonic oscillator and an anharmonic
oscillator is that the resonance frequency (i.e. the frequency at which the phase is
−90◦) of an anharmonic oscillator changes with the amplitude (ω′

0 = ω′
0(A)), while

for a harmonic oscillator the resonance frequency is independent of the oscillation
amplitude. Thus, in a simplified reasoning for each segment on the resonance curve
(with different amplitude) a different resonance frequency applies for the anharmonic
oscillator. This leads to oddly shaped resonance curves, since not thewhole resonance
curve shifts, but parts of the resonance curve shift differently due to their different
amplitudes. In the following we will qualitatively explain the peculiar shape of the
resonance curve for an anharmonic oscillator as shown in Fig. 14.4a. In this figure the
average tip-sample distance is fixed at d0 and considered to be so close to the surface
that the turnaround point close to the surface reaches into the regime of repulsive
interaction at the maximum amplitude.
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The numerical solutions of the equation of motion [6] show that the following
general rule still holds: An attractive interaction shifts the resonance frequency to
lower frequencies, while a repulsive interaction shifts the resonance frequency to
higher frequencies. However, in contrast to the case of the harmonic oscillator the
resonance curve does not shift homogeneously as a whole. For the anharmonic oscil-
lator we have to apply this shift rule locally, i.e. individually for certain amplitudes
of the resonance curve. According to Fig. 14.4b, an increasing oscillation amplitude
corresponds to an decreasing distance between the sample surface and the lower
turnaround point d0 − A.

For frequencies (much) lower than the resonance frequency the amplitude is small
(off-resonance), and does not reach the regime of tip-sample interaction, as shown in
Fig. 14.4b. Therefore, the resonance curve is very close to the resonance curve of the
free cantilever (region a in Fig. 14.4a, no shift of the resonance curve). Closer to the
free resonance frequency the oscillation amplitude increases and at the turnaround
point close to the surface the tip reaches the regime of attractive tip-sample inter-
action, as shown in Fig. 14.4b. This results effectively in a local downshift of the
resonance frequency explaining the “ear” seen to the left in region b in Fig. 14.4a.3

As explained below, the oscillation state of the harmonic oscillator can swich to a
high amplitude branch (green in Fig. 14.4a), resulting in smaller tip-sample distances
at the turnaround point close to the surface. The resulting repulsive interaction leads
to a local upward shift of the resonance curve (region c in Fig. 14.4a). If the tip
comes even closer to the surface at the lower turnaround point, this leads to a further
upwards shift of the resonance frequency, leading to the “ear” seen to the right in
region d in Fig. 14.4a and the resonance is reached (A = Afree and φ = −90◦).

As seen from Fig. 14.4a, for certain ranges of frequencies the resonance curve of
an anharmonic oscillator becomes multivalued. The solutions shown as blue dotted
lines are unstable [5], while the low-amplitude branch (red in Fig. 14.4a) and the
high-amplitude branch (green) correspond to two stable solutions of the equation
of motion for a specific driving frequency ω. This coexistence of two oscillation
states (with different amplitudes) for the same external conditions (ωdrive, Adrive) is
a characteristic of the anharmonic oscillator. As we will see in the following, abrupt
switches between these branches can occur.While the resonance curvewas discussed
here as a function of the driving frequency ω ≡ ωdrive, in tapping mode atomic force
microscopy the driving frequency is kept constant and we will discuss this case in
the following.

3Correspondingly, the left “ear” also occurs on the high-frequency side of the resonance curve.
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14.3 Amplitude Instabilities for an Anharmonic Oscillator

In Fig. 14.5awe show the oscillation amplitude as a function of the average tip-sample
distance d with the oscillation excited at the free resonance frequency ωdrive = ω0.
This figure shows the reduction of the amplitude for decreasing tip-sample distance,
as already shown in Fig. 14.2b. Additionally, often a switching between the high-
amplitude branch and the low-amplitude branch (present due to the anharmonicity)
is observed as shown in Fig. 14.5a. The tip-sample approach is shown in red while
the retraction is shown in green.

The jumps shown in Fig. 14.5a can be explained considering the resonance curves
shown in Fig. 14.6a–c for different average tip-sample distances during approach and
retraction (d1, d2, and d3). The excitation is considered to be at the free resonance
frequency of the cantilever ω0.

As discussed above, the anharmonic tip-sample interaction leads to a distortion
of the resonance curve with multivalued segments, instead of the simple shape of the
resonance curve for a harmonic interaction. For a relatively large average tip-sample
distance of d1, the “ear” on the low-frequency side of the resonance curve visible
in Fig. 14.6a arises due to the attractive interaction. This assignment can be made
(locally) in the sense that the frequency shift to lower frequencies occurs for an attrac-
tive interaction, found in the harmonic case. Thus, a “local shift” of the resonance
occurs for amplitudes at which the tip dives into the corresponding interaction zone.
Due to this local shift of the resonance curve the amplitude at the free resonance

Fig. 14.5 a Amplitude-
distance curves with jumps
between the low-amplitude
branch and the
high-amplitude branch
shown for approach (red)
and retraction (green).
b Phase as function of the
oscillation amplitude during
approach (red) and retraction
(green). Phase values below
the −90◦ line correspond to
a net attractive interaction
(low-amplitude branch),
while phase values above the
−90◦ line correspond to a
net repulsive interaction
(high-amplitude branch)
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Fig. 14.6 Resonance curves for different average tip-sample distances d. The driving frequency is
considered to be at the resonance of the free cantilever ω0. a For large tip-sample distances (around
d1), the tip reaches only the attractive regime at the lower turnaround point, leading to an “ear” on
the low-frequency side. bAt smaller tip-sample distances of about d3 the lower branch disappears at
ω0 and a jump to the high-amplitude branch occurs (red arrow). c If the tip-sample distance increase
again, the oscillation stays on the high-amplitude branch until the “ear” on the high-frequency side
disappears and the jump back to the low-amplitude branch occurs (green arrow in (c)). This figure
is adapted from [6]

frequency is already reduced relative to the free amplitude (formation of the “ear” in
Fig. 14.6a).

For smaller tip-sample distances d3, an “ear” develops on the high-frequency side
(Fig. 14.6b) for large amplitudes due to the repulsive tip-sample interaction. Due to
this “ear” a low-amplitude branch and a high-amplitude branch develop at ω0. In
Fig. 14.6b the situation is shown in which the low-amplitude branch of oscillation
disappears at ω0. The dotted line in Fig. 14.6b indicates the situation for tip-sample
distances slightly smaller than d3, where no low-amplitude branch exists anymore
at ω0. The oscillation switches abruptly to the high-amplitude branch indicated by
the red arrows in Figs. 14.5a and 14.6b. The difference in amplitude between the
two branches is (only) about 1nm. With the tip in the high-amplitude branch the
amplitude decreases when the tip approaches closer to the surface, i.e. for smaller d
(Fig. 14.5a).

When the tip is subsequently retracted from the sample, the high-amplitude branch
disappears at ω0 for a tip-sample distance larger than d2 and the oscillation returns
abruptly to the low-amplitude branch (green arrows in Figs. 14.5a and 14.6c). Work-
ing in the bistable tip-sample distance regime, where the high- and the low-amplitude
modes exist, can always lead to the danger of switching between these solutions due
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to noise or feedback problems at sharp features in the topography. In this case, an
amplitude setpoint outside the bistable region should be chosen.

While the switching between the two branches can occur as described above,
there are also circumstances in which one branch is stable. For instance for low
(free) oscillation amplitudes it was observed that the oscillation remains in the low
amplitude branch for all tip-sample distances [7]. Moreover, we considered here
only conservative tip-sample interactions for which themaximal amplitude remained
constant, as seen inFig. 14.6. For dissipative interactions the amplitudes can decrease.
Hysteretic dissipative interactions can occur due to a water capillary neck which
can form under ambient conditions between tip and sample. These interactions can
modify the switching between the two branches of oscillation [7].

Since the difference in the oscillation amplitude between the high-amplitude and
the low-amplitude branches is small (∼1nm), a way to identify in which branch the
cantilever is oscillating is desired. As we will show in the following, this assignment
can be made via the phase φ. According to (14.13), φ < −90◦ corresponds to a net
attractive interaction, while φ > −90◦ corresponds to a net repulsive interaction.

In Fig. 14.5b, the double-valued dependence of the phase on the amplitude accord-
ing to (14.5) is plotted as a dashed gray line. The evolution of the phase in the intermit-
tent contact mode occurs as follows. As the average tip-sample distance d is reduced
the tip reaches first the attractive tip-sample region leading to phase shift becoming
more negative than −90◦ according to (14.13). This oscillation state corresponds
according to Fig. 14.6a to the low amplitude branch. At amplitude A3, the previously
discussed jump from the low-amplitude branch to the high-amplitude branch, i.e. to
A

′
3, occurs. This results in a jump in the phase above−90◦ (i.e. repulsive interaction)

and the phase approaches zero for smaller tip-sample distances.
During the retraction (increasing d), the green line is followed.4 Thus according

to (14.13) the high-amplitude branch with φ > −90◦ corresponds to a net repulsive
interaction. At A

′
2 the high amplitude branch is lost (Fig. 14.6c) and a jump to the low

amplitude branch (attractive interaction) occurs, followed by a subsequent increase
of the phase to −90◦ during further retraction towards the free oscillation.

In total via the phase we can obtain the assignment that the low-amplitude branch
corresponds to φ < −90◦ (net attractive tip-sample interaction), while the high-
amplitude branch corresponds to φ > −90◦ (net repulsive interaction) and the mea-
surement of the phase gives direct information if imaging is performed in the low or
the high-amplitude branch.

Whenmeasuring the phase or the amplitude-distance dependence A(d), aworking
point either in the low-amplitude branch (net attractive) or in the high-amplitude
branch (net repulsive interaction) can be selected for subsequent imaging. Depending
on the material imaged, different interaction regimes may be desired. For a soft

4Here we used the dependence φ(A/Afree) while in an experiment the φ(d) is obtained. However,
the two dependences can be converted into each other using the (measured) A(d) dependence.
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delicate sample the attractive interaction regime may be desired in order to minimize
the tip-sample interaction, while for a hard sample the repulsive regime may be
desired in order to penetrate a contamination layer on top of the hard sample.

Due to the bistable nature of the amplitude-distance behavior, the oscillation state
may switch from one to the other state. One reason for a change of the oscillation
state is a difference in the material properties (cf. Fig. 13.6). When scanning from
material C to material B (same height of the atoms), different material dependent
force-distance curves can, for instance, trigger a switch from the high-amplitude
state (net repulsive interaction, working point 4) on material C to the low-amplitude
state (net attractive interaction, working point 2) on material B, or the other way
around (cf. Fig. 13.6, curves C and B). The smaller oscillation amplitude leads to
a reduction in the average tip-sample distance d by about ∼1nm, which can be
mistaken for a topographic step. However,monitoring additionally the phase can help
to distinguish a real step in the topography from a border between different materials.
In the low-amplitude branch φ < −90◦, while in the high-amplitude branch φ >

−90◦. A purely topographic step (same material) is not associated with a phase
change. In this way, a true height change, e.g. due to a step edge (no phase change),
can be distinguished from a switch from the high-amplitude oscillation state to the
low-amplitude oscillation state due to different materials. This can lead to material
contrast which can be observed during scanning.5

Up to now we have considered the excitation frequency to be at the free res-
onance frequency ωdrive = ω0. However, in tapping mode the driving frequency is
often chosen to be detuned, i.e. not exactly at but slightly above or below the free
resonance frequency. The implications of the detuned driving on the amplitude as a
function of tip-sample distance are summarized in the following [6]. If in tapping
mode the driving frequency is chosen lower than the free resonance frequency, the
bistable region is narrower and in most of the working points (amplitude setpoints)
the oscillation is stable in the high-amplitude branch (no instabilities) as shown in
Fig. 14.7a. This corresponds to a stable operation with the tip being at the lower
turnaround point in the repulsive interaction regime and is desirable for hard sam-
ples. If the driving frequency is chosen larger than the free resonance frequency, the
oscillation remains, down to very low amplitudes on the low-amplitude branch and
the bistable region extends almost over the complete range of tip-sample distances as
shown in Fig. 14.7c. This can be a disadvantage in terms of possible instabilities. On
the other hand, the low-amplitude branch corresponds to an operation in the range of
the attractive tip-sample interactions. This can be desirable for imaging soft samples
if repulsive tip-sample interactions are to be minimized.

5There are also other reasons for the switch between different oscillation sates. For instance, the
presence of a valley in the surface topography can enhance the attractive forces (larger regions of the
tip will feel the attractive interaction) and thus change the force-distance behavior locally, resulting
in a switch to the other branch of the oscillation state.
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Fig. 14.7 Amplitude as a
function of the average
tip-sample distance d for
driving frequencies a below
ω0, b at ω0, and c above ω0.
The curves are shown for
approach (red) and retraction
(green). As an exercise, the
dependencies in a–c can be
deduced from Fig. 14.6a–c
This figure is adapted from
[6]
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14.4 Energy Dissipation in Tapping Mode
Atomic Force Microscopy

In our discussion of the tapping mode up to now for simplicity we have considered
only conservative tip-sample interactions. When introducing dissipative interactions
in dynamic AFM in the small amplitude limit, we subsumed the dissipative part
of the tip-sample interactions in one number, the quality factor Qts, according to
(13.14). For the case of large amplitudes used in the tapping mode, the strength
of the dissipative tip-sample interaction is different at different distances occurring
during one cycle of oscillation. Qualitatively, the dissipative tip-sample interactions
should have an appreciable value only close to the lower turnaround point of the
oscillation cycle in tapping mode, while the viscous cantilever damping in air is
proportional to the velocity, i.e. maximal at the average tip-sample position d0. Since
the conservative and the dissipative part of the tip-sample interaction are a priori
unknown, any modeling (e.g. by solving the equation of motion) is difficult from
the start. However, no matter how complicated the (conservative and dissipative)
interactions are, the law of energy (power) conservation holds.

Therefore, we will now extend our the previous approach, which lead us to (14.5),
and use the principle of energy conservation to include also the dissipative tip-sample
interaction in the balance of the power. We apply the usual convention that the power
entering the system (which is the oscillating cantilever) is positive, while the power
leaving the system has a negative sign. Following this convention, the power driving
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the cantilever Pdrive is positive, while the power dissipated from the cantilever to the
surrounding fluid Pcant, as well as the power dissipated to the tip-sample interaction
Pts have negative values. In the steady-state, the the sum of these powers averaged
over one period vanishes, leading to

〈Pdrive〉 + 〈Pcant〉 + 〈Pts〉 = 0. (14.14)

If we would like to avoid negative powers, we can us their absolute values, resulting
in the following equation

〈Pdrive〉 = |〈Pcant〉| + |〈Pts〉| . (14.15)

In the following, we analyze this power into and out of the driven cantilever-
tip-sample system. No assumptions on the tip-sample force are made, the only
assumption made in the following is that the oscillation under the influence of the
tip-sample force still remains sinusoidal, which is proven experimentally to be the
case [1].

The power pumped into the system by external driving of the cantilever was
calculated in (14.2) as6

〈Pdrive〉 = −1

2
k AdriveAω sin φ. (14.16)

The cantilever damping by the fluid is assumed to be proportional to ż, as Fdiss
cant =

− mω0
Qcant

ż. Along the same lines as in (14.1), the power dissipated in the cantilever can

be calculated as

|〈Pcant〉| =
〈
mω0

Qcant
ż2

〉
= 1

T

mω0

Qcant

T∫

0

A2ω2 sin2 (ωt + φ)dt = k A2ω2

2Qcantω0
. (14.17)

Due to (14.15), the power dissipated in the tip-sample interaction can be written as

|〈Pts〉| = 〈Pdrive〉 − |〈Pcant〉| = k A2ω

2Qcant

(
QcantAdrive sin (−φ)

A
− ω

ω0

)
. (14.18)

This result was obtained using the general law of energy (or power) conservation
without any assumptions about the nature of the tip-sample interaction. If the driving
frequency ω is chosen at the resonance frequency of the free cantilever ω0, (14.18)
can be written as7

6Since 0 > φ > −180◦, 〈Pdrive〉 is positive.
7While we used here the principle of energy conservation to derive (14.19), this equation can
be obtained alternatively by multiplying (14.10) with ω0A sin(ω0t + φ) and integrating over one
period, as will be shown in Sect. 14.5.
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|〈Pts〉| = k A2ω0

2Qcant

(
Afree

A
sin (−φ) − 1

)
, (14.19)

with Afree = QcantAdrive. Correspondingly, the dissipated energy per oscillation
period T results as

|〈Ets〉| = |〈Pts〉| · T = 2πEosc

Qcant

(
Afree

A
sin (−φ) − 1

)
, (14.20)

with Eosc = 1/2 k A2 being the energy contained in the cantilever oscillation, if ω
is close to ω0. The last term in (14.20) is the power dissipated by the cantilever
damping, while the first term in (14.20) is the total dissipated power.

In the case that no dissipative tip-sample interactions are present (〈Ets〉 = 0), the
simple relation for the phase already obtained in (14.5) results as

sin(−φ) = A

Afree
. (14.21)

We can rearrange (14.20) if we remember that Qcant = 2πEosc/〈Ecant〉 and we
then obtain the following expression for the phase

sin (−φ) = A

Afree

( 〈Ets〉
〈Ecant〉 + 1

)
. (14.22)

The second term in (14.22) is the contribution due to the conservative tip-sample
interaction, while the first term includes the contribution due to the dissipative inter-
actions.

In the intermittent contact mode, the amplitude is kept constant by the feedback
and thus the phase remains constant during scanning (according to (14.21)) if no
dissipative tip-sample interaction is present. A phase change is therefore related to
a dissipative tip-sample interaction and maps of the phase recorded as a free signal
(not used for feedback) correspond tomaps of the dissipative tip-sample interactions.
Vice versa: Since A is kept constant by the feedback, a change of the conservative
tip-sample interaction does not lead to a phase change.

Now we consider as an approximation that 〈Ets〉 is a constant in (14.22), i.e.
not dependent on the oscillation amplitude A/Afree. This means that at the lower
turnaround point always the same energy is dissipated independent of the amplitude.
For this case the φ(A/Afree) dependence from (14.22) is displayed in Fig. 14.3 as a
dashed curve for 〈Ets〉 / 〈Ecant〉 = 0.1.

Finally, we give a quantitative example of the power dissipated into the tip-sample
interaction. All variables in (14.19) are either known or can bemeasured. In a tapping
mode experiment on a silicon wafer in air, a power dissipation |〈Pts〉| = 0.3pW was
obtained independent of the oscillation amplitude [1].
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14.5 General Equations for Amplitude and Phase
in Dynamic AM Atomic Force Microscopy

In the previous sections we derived equations for the amplitude and the phase in
tapping mode, or generally in dynamic amplitude modulation (AM) AFM without
the limit of a small oscillation amplitude.We obtained these equations partly from the
equation of motion and partly from the principle of energy conservation. In order to
simplify the analysis we considered often special cases, like conservative tip-sample
interactions, or excitation at the resonance frequency, i.e. ωdrive = ω0. Now we will
derive from the equation ofmotion general equations for amplitude and phasewithout
these limits.

We start from the equation of motion (14.6) with Fts not necessarily conservative.
We consider a driving oscillation zdrive = Adrive cosωt at a frequency ω which can be
different from ω0, resulting in a cantilever oscillation z = A cos (ωt + φ). Inserting
this and the time-derivatives of z into (14.6) results in

−mω2A cos (ωt + φ) = mω0ωA

Qcant
sin (ωt + φ) − k A cos (ωt + φ) + k�L + Fts

+k Adrive cos (ωt) . (14.23)

If we now multiply this equation by A cos (ωt + φ) /T and integrate over time from
zero to T , the following equation results

−mω2A2 1

T

T∫

0

cos2 (ωt + φ)dt = mω0ωA2

QcantT

T∫

0

sin (ωt + φ) cos (ωt + φ)dt

−k A2 1

T

T∫

0

cos2 (ωt + φ)dt + k�L
1

T

T∫

0

cos (ωt + φ)dt + 1

T

T∫

0

Ftsz(t)dt

+k AdriveA
1

T

T∫

0

cos (ωt) cos (ωt + φ)dt. (14.24)

The first and third integral on the right vanish (due to symmetry) after integration
over one period, while the integral over cos2 over one period results in T/2 and the
integral over the last term on the right results in T/2 cosφ. Thus, the above equation
simplifies to

− mω2
0 A

2

2

ω2

ω2
0

= −1

2
k A2 + 1

T

T∫

0

Ftsz(t)dt + 1

2
k AAdrive cosφ, (14.25)
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and finally to

〈Fts(d + z(t)) · z(t)〉 = 1

2
k A2

(
1 − ω2

ω2
0

)
− 1

2
k AAdrive cosφ. (14.26)

In the limit of ω = ω0 this corresponds to (14.13).
A second equation for the amplitude and the phase can be obtained in a similar

manor if (14.6) is multiplied by Aω sin (ωt + φ) and integrated over one period.
Due to symmetry the integrals of sin x and sin x · cos x over one period vanish.
Moreover, since cos (ωt) sin (ωt + φ) integrated over one period results in T/2 sin φ,
the following equation results

−〈Fts(d + z(t)) · ż(t)〉 T = |〈Ets〉| = πk AAdrive sin(−φ) − πk A2 ω

Qcantω0
,

(14.27)

which is equivalent to (14.18).8 The two independent equations (14.26) and (14.27)
can be solved for the amplitude and the phase [8] (A(ω, 〈Ets〉 , 〈Fts · z〉) and
φ(ω, 〈Ets〉 , 〈Fts · z〉)).

In the following we consider cases in which the tip-sample force is conserva-
tive or dissipative and discuss the consequences on the expressions 〈Fts · ż(t)〉 and
〈Fts · z(t)〉 which occur in the equations relating the amplitude and the phase, i.e.
(14.26) and (14.27), respectively. In Fig. 14.8a one oscillation cycle of the tip oscil-
lation z(t) is shown with the tip reaching the sample at the lower turnaround point.
This curve is symmetric (even) with respect to the time at which the lower turnaround
point is reached (dotted vertical line). In Fig. 14.8b an example of a conservative tip-
sample force (Lennard–Jones type force) is shown as function of time (red line). For
a conservative tip-sample force the force depends only on the tip-sample distance
d + z. Thus, the tip-sample force is the same for a certain tip-sample distance during
approach or retraction. A conservative tip-sample force is even with respect to the
time at which the lower turnaround point is reached. The same force is exerted at the
same z-positions during approach and retraction of the tip. This also implies that the
work done during one cycle of oscillation vanishes.

Now we will show that the expression 〈Fts(d + z(t)) · ż(t)〉 occurring in (14.27)
vanishes for a conservative force when averaging is performed over a complete cycle
of oscillation. Without loss of generality we can perform the integral

〈Fts(d + z(t)) · ż(t)〉 = 1

T

T∫

0

Fts(d + z(t)) · ż(t)dt (14.28)

over the time-range from t = 0 to t = T . Since ż(t) = −Aω sin (ωt + φ) is odd
with respect to the time of the lower turnaround point (green curve in Fig. 14.8a)

8〈Fts · ż(t)〉 is negative, as power is dissipated from the system to the environment.
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Fig. 14.8 a The tip motion
z(t) during one oscillation
cycle is even with respect to
the lower turnaround point of
the oscillation, while ż(t) is
odd. b A conservative
tip-sample force is even with
respect to the lower
turnaround point (approach
and retraction are highlighted
by blue and red background
colors, respectively), while
non-conservative force has
different values for approach
and retraction at the same tip
positions (dashed curve)

sample
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while a conservative tip-sample force is even, the product of both is odd and the
integral (14.28) vanishes for conservative forces. In this case and for ω = ω0 (14.27)
simplifies to (14.5).

In the case of a non-conservative tip-sample force the force is no more even with
respect to the lower turnaround point, as indicated by the dashed line in Fig. 14.8b. If
the total non-conservative tip-sample force can be decomposed into a conservative
and a dissipative part as Fts = Fcons

ts + Fdiss
ts the contribution from the conservative

force to the integral in (14.28) vanishes and only the contribution due to the dissipative
force has to be considered as 〈Fts · ż(t)〉 = 〈

Fdiss
ts · ż(t)〉 in (14.27).

Now we discuss the expression 〈Fts · z(t)〉 occurring in (14.26) with respect to
the symmetry of Fts. Any non-conservative force, being different for approach and
retraction, can formally be decomposed into an even and an odd contribution9 as

Feven
ts (d + z) = 1

2

(
Fapproach
ts (d + z) + F retract

ts (d + z)
)

, (14.29)

and

Fodd
ts (d + z) = 1

2

(
Fapproach
ts (d + z) − F retract

ts (d + z)
)

, (14.30)

9The even/odd force contributions with respect to the time �t > 0 rela-
tive to the time of the lower turnaround point t0 + T/2 are Feven/odd

ts (d +
z(t0 + T/2 − �t)) = 1/2 (Fts(d + z(t0 + T/2 − �t)) ± Fts(d + z(t0 + T/2 + �t))) =
1/2

(
Fapproach
ts (d + z) ± F retract

ts (d + z)
)
. If �t → −�t , Feven

ts → Feven
ts , while Fodd

ts → −Fodd
ts .
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Fig. 14.9 Relation between the forces during approach and retraction and the even force compo-
nent. The odd force component is half of the difference between the approach and the retraction
force

giving rise to
Fapproach
ts (d + z) = Feven

ts (d + z) + Fodd
ts (d + z), (14.31)

and
F retract
ts (d + z) = Feven

ts (d + z) − Fodd
ts (d + z). (14.32)

This decomposition is also shown graphically in Fig. 14.9 as function of the tip-
sample distance. The force being even with respect to the lower turnaround point is
the average of the approach and retraction curves (dark blue line in Fig. 14.9), while
the odd contribution is half of the difference between the approach and the retraction
curves.

Often the assignment Feven
ts = Fcons

ts and Fodd
ts = Fdiss

ts ismade. Somecaveats about
this assignment are discussed in [9]. While a conservative force has to be even and
for example a velocity dependent dissipative force is odd, generally a dissipative
force is not necessarily odd. If we nevertheless follow the above assignment, the
expression 〈Fts · z(t)〉 vanishes for an odd force (having opposite sign for approach
and retraction), because the tip position z(t) is even with respect to the time of
the lower turnaround point. The integral of the odd function Fdiss

ts · z(t) over one
oscillation cycle vanishes. For an even (conservative) force, both terms in the integral,
the tip position z(t) and Fts are even and thus the integral does not vanish and
〈Fts · z(t)〉 = 〈

Fcons
ts z(t)

〉
in (14.26).

In total, the contribution to the integral in (14.26) comes only from the even
(conservative) force component, while the contribution to the integral in (14.27)
comes only from the odd (dissipative) force component (while the integral over the
respective other force component vanishes).
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14.6 Properties of the Intermittent Contact
Mode/Tapping Mode

The intermittent contact mode allows high-resolution topographic imaging even of
soft samples. The greatest advantage of the tapping mode is related to the contam-
ination layer present at surfaces under ambient conditions. This thin contamination
layer, mostly consisting of water, results in enormous problems when using the non-
contact mode. This contamination layer masks the properties of the actual surface
under study below the contamination layer. More importantly, if the tip touches this
(water) contamination layer, unwanted capillary forces lead to a very strong undesir-
able force component masking the actual forces from the surface under study. In the
case of the tapping mode, the tip passes through this contamination layer and inter-
acts with the actual surface, while in the non-contact mode an unintentional touching
of the contamination layer can lead to strong unintended force contributions.

In the contact mode the tip is pressed onto the surface and the contamination layer
does not play a significant role. However, here the relatively strong (nN) vertical force
leads to strong lateral forces, resulting inwear or sample damage, as the tip scans over
the surface. The alternating tapping and motion out of the range of the tip-sample
interaction due to the large amplitude in intermittent mode inherently prevents lateral
forces causing damage (wear) of tip or sample during scanning. Due to the very short
contact to the surface, the surfacematerial is not pulled sideways by shear forces since
the applied force is always vertical. The large oscillation amplitudes also allow to
use relatively soft cantilevers and nevertheless avoiding snap-to-contact. This shows
that the tapping mode has several important advantages over the other modes. The
tappingmode thus exploits the advantages of contactmode and non-contactmode and
it avoids their disadvantages. The intermittent contact mode has several advantages
when imaging a surface, however, a disadvantage is that it gives no easy access to
quantities describing the tip-sample interaction like the force or the force gradient,
since these quantities are averaged in a non linear manner over the oscillation cycle.

Tapping mode imaging is implemented in ambient air by oscillating the cantilever
at or very near the cantilever resonance frequency at typical oscillation frequencies
between 50 and500kHz.Amplitudes in the range of 10–100nmare used in thismode,
when the tip is not in contact with the surface (free amplitude). Force constants in
the range between 10–50N/m are usually used. The oscillation amplitude of the
cantilever tip is measured by a corresponding amplifier and fed to the input of the
controller electronics. The feedback loop then adjusts the tip-sample separation to
maintain a constant setpoint amplitude for instance 80–90% of the free amplitude.
In order to stabilize the oscillation in the net repulsive interaction regime (high-
amplitude branch), the driving frequency is often chosen below (usually about 5%
below) the resonance frequency of the free cantilever, i.e.ω < ω0. It is also found that
larger oscillation amplitudes A tend to stabilize the high-amplitude branch (repulsive
interaction regime), while smaller amplitudes tend to stabilize the low-amplitude
branch for usual values of A/Afree ≈ 0.5 − 0.9.



252 14 Intermittent Contact Mode/Tapping Mode

As we have already seen, the amplitude has a monotonous dependence on the
tip-sample distance (Fig. 14.2b). This leads to a clear unambiguous feedback signal,
being another very important advantageof the tappingmode.This is different from the
frequency shift used as the feedback signal, where the non-monotonous dependence
on the tip-sample distance can lead to serious instabilities as discussed in Sect. 16.3.

14.7 Summary

• The intermittent contact mode (tapping mode) is a detection mode which differs
from the AMmode in the following ways: (a) The oscillation amplitudes are large
(typically 50nm), reaching deep into the repulsive regime and correspondingly the
tip-sample force has a non-linear distance dependence. (b) The driving frequency
is at or very close to the free resonance frequency ω0.

• The oscillation amplitude decreases linearly with decreasing average tip-sample
distance d, giving rise to a stable feedback signal without the danger of seri-
ous instabilities. This amplitude reduction also occurs without any dissipative
tip-sample interaction due to a less efficient energy transfer off-resonance. The
resonance condition φ = −90◦ applying for the case of the free cantilever is left
due to the tip-sample interaction.

• An anharmonic tip-sample force leads to the coexistence of two vibrational modes
with a low-amplitude and a high-amplitude (separated by about 1nm), corre-
sponding to a net attractive and net repulsive interaction, respectively. Transitions
between these modes occur at particular tip-sample distances, or when scanning
from one material to another. These modes can be distinguished by the phase,
φ < −90◦ for the low-amplitude (attractive) mode and φ > −90◦ for the high-
amplitude (repulsive) mode.

• The dissipative tip-sample interaction energy can be calculated via the energy con-
servation. The power dissipated into the tip-sample interaction can be determined
by measuring the oscillation amplitude and the phase.

• Maps of the phase signal in the intermittent mode of atomic force microscopy
correspond to maps of tip-sample dissipation.

• In contrast to the contact mode, in the tapping mode no sidewise frictional forces
are exerted on the sample minimizing the wear on delicate samples.
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Chapter 15
Mapping of Mechanical Properties
Using Force-Distance Curves

The imaging modes considered in the previous chapters resulted mainly in
topographic imaging. Contours of constant force in the static mode, or constant
oscillation amplitude in the dynamic AM modes are measured. In Chap.10 we have
seen that force-distance curves give important information on the mechanical prop-
erties of the sample, like elasticity of the sample, adhesion properties and dissipation.
The concept behind mapping of mechanical properties by force-distance curves is to
acquire a force-distance curve at each image point and to extract images of elasticity,
adhesion and other mechanical properties.

In the dynamic modes, the information about the tip-sample interaction is always
averaged over the oscillation cycle, which complicates the extraction of information
on the tip-sample interaction. Invoking force-distance curves during scanning gives
more direct access to the mechanical properties. This method using force-distance
curves for the mapping of mechanical properties of the sample has different names:
peak force tapping [1, 2], force volume or pulsed force mode [3, 4]. Besides access
to the mechanical properties, this mode also allows high-resolution imaging, it is
a tapping mode under additional force control, while the ordinary tapping mode
controls the amplitude whereas the tip-sample force remains unknown.

15.1 Principles of Force-Distance Curve Mapping

When measuring maps of force-distance curves, these curves are not acquired with
a frequency close to the resonance frequency of the cantilever, but at a much lower
frequency of several thousand Hz. Force-distance curves are acquired in the quasi-
static mode i.e. measuring the force by the (quasi-static) bending of the cantilever.
If several thousand force-distance curves are acquired per second, a force-distance
curve can be acquired at each image point, while still maintaining a reasonable
acquisition time of a few minutes for an image.
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Fig. 15.1 a Sinusoidal
change of the z-position of
the sample during the
acquisition of the
force-distance curve. b
Cantilever deflection ztip
(proportional to the
tip-sample force) as a
function of the time. c
Tip-sample force as function
of the tip-sample distance.
From this curve, quantities
like the adhesion force Fadh,
the indentation depth dindent ,
or the dissipation energy can
be retrieved and maps
(images) of these quantities
can be acquired. The
dissipation corresponds to
the shaded area between the
approach and the retraction
curve. The Young’s modulus
of the sample can be
determined by fitting a
model for the mechanic
contact to the approach
force-distance curve
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The force-distance curves considered in Chaps. 10 and 12 were taken only at one
point on the sample within a acquisition time of typically a second. In force-distance
curvemapping, the curves are typically acquired in less than amillisecond. In order to
prevent cantilever excitations at higher harmonics the linear change of the z-position
with sharp edges at the turnaround points is replaced by a sinusoidal excitation. The
z-position of the sample is changed (modulated) at a frequency of several kHz, as
shown in Fig. 15.1a. The larger z-values correspond to a large tip-sample distance
with negligible tip-sample force,while at the lower z-values the tip comes into contact
with the sample.

In Fig. 15.1b the corresponding cantilever deflection is shown, which is propor-
tional to the tip-sample force. When the tip comes closer to the sample from region
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A until close to point B, the attractive force increases slightly. At point B snap-to-
contact occurs. The repulsive force increases towards point C . The maximum (peak)
force is reached at point C . This peak force is of central importance and is used
also as the signal for the z-feedback. During retraction of the tip the repulsive force
turns into an attractive adhesive force. At point D the maximum attractive force is
reached and snap-out-of-contact occurs. After snap out of contact the tip-sample
force is negligible and a cantilever ring-down of the free cantilever is observed with
an oscillation at its resonance frequency. The time constant of this exponential ring-
down is given by the damping of the cantilever (region E). Thus, in region E it is not
the tip-sample force which is shown, but the cantilever bending during ring-down.
This “false” force signal due to the cantilever ring-down is undesired and has to
be distinguished from other features of interest in the force-distance curve during
the analysis of the curve. In region F , the tip has reached its quasi-free equilibrium
position, and it is moved to the next lateral position (next image pixel) and the next
force-distance curve will be acquired.

The force as a function of time can be converted into a curve of the force as a func-
tion of the z-position of the sample zsample, which is considered to oscillate. Further,
taking also the measured cantilever bending resulting from the force measurement
into account, the dependence of the tip-sample force can be obtained as a function of
the tip-sample distance d = ztip − zsample, which is shown schematically in Fig. 15.1c
(cf. Fig. 11.6). From region A to B, a very small attractive force is measured during
approach. At the snap-to-contact, the tip-sample distance decreases abruptly and the
attractive force becomes abruptlymore negative (dashed line in region B). Approach-
ing more closely, the tip-sample force becomes repulsive and reaches the peak force
(region C). The zero point for the tip-sample distance d is chosen at the point where
the force is zero. At this point, the repulsive force at the tip apex is balanced by the
attractive force from a larger volume of the tip. Negative values of d correspond to an
indentation of the tip into the sample. Upon tip retraction from the surface, the force
will be the same as for the approach for conservative interactions (such as an elastic
force). If there is some dissipative tip-sample interaction (such as plastic deforma-
tion) the force during retraction will lie below the force curve for the approach.
The larger attractive (more negative) force during retraction can be explained due
to adhesion. At point D snap-out-of-contact occurs; here the tip-sample distance d
increases abruptly and the tip-sample force drops to negligible values (dashed line
in region E). In region F , the free cantilever state is reached before the next force
curve is acquired.

The measured peak force is used for the z-feedback, i.e. the measured peak force
is compared to a peak force setpoint and a feedback controller determines the appro-
priate z-signal needed in order to keep the measured peak force close to the setpoint.
This feedback on the peak force has an advantage compared to the intermittent con-
tact (tapping) mode. In tapping mode, the amplitude is kept constant, not the force. It
is an advantage if the force is controlled, since a high peak force can induce undesired
damage of the sample surface or the tip. Thus, controlling the force to a sufficiently
small peak force is the best way to prevent unwanted sample and tip modifications.
Since in tapping mode the amplitude and not the (peak) force is controlled, undesir-
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able large forces may occur during scanning. Controlling the peak force is a gentle
way of tapping, minimizing undesirably strong tip-sample interactions. Therefore,
the peak force tapping mode is not only useful for mapping mechanical properties,
but also for high-resolution imaging.

15.2 Mapping of the Mechanical Properties of the Sample

In the following, it will be shown how the peak force tapping mode can be used to
determine the mechanical properties of the sample. For instance, the adhesion force
Fadh and the indentation depth dindent can be determined from each force-distance
curve, as indicated in Fig. 15.1c. These quantities can be represented as images of
(maximum) adhesion force or indentation depth at the peak force.

The dissipation energy can be obtained as the area between the approach and the
retraction curves, as

Ediss =
zmax∫

zmin

(
Fapproach − Fretract

)
dz, (15.1)

with Fapproach and Fretract being the forces during approach and retraction, respectively.
The dissipation energy can be represented by the shaded area in Fig. 15.1c. The
dissipation in the attractive regime (negative forces, which corresponds to dissipation
due to adhesion) can even be distinguished from the dissipation in the repulsive
regime, and those quantities can be mapped separately.

Another quantity of interest which can bemapped is the slope of the force-distance
curve in the repulsive regime, which is related to the stiffness of the sample. More
quantitatively, the force-distance curves can be fitted to an appropriate model of the
tip-sample contact, for instance the Hertz model of the elastic contact, or models also
including contributions from attractive forces, as the DMR, JKR, and MD models
introduced in Sect. 10.2. In principle, Young’s modulus can be obtained from a fit of
the model to the measured force-distance curve. However, several parameters enter
into the model which are often not known (precisely): the tip radius, the Young’s
modulus of the tip, and the Poisson ratios of the tip and the sample. If these parameters
are known or estimated, the Young’smodulus of the sample can be determined. Often
it is not necessary to determine the absolute value of Young’s modulus, but to detect
differences if different materials are present at different areas of the sample.

The parameters characterizing the sample properties can be extracted “online”
during scanning from the acquired force-distance curve using fast data processing.
In this case, only the maps of the resulting parameters are stored as data and the
individual force-distance curve is not stored. The challenge in this analysis is then
to distinguish the desired points of the force-distance curve (such as peak force
and maximum adhesive force) from undesirable features like the cantilever ring-
down. In some cases the maximum due to cantilever ring-down may become the
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global maximum of the curve, while the peak force is only a local maximum. The
curve analysis algorithm has to reliably identify the desired information. This is
specifically important for the peak force, since this is used for the feedback and any
false determination of the peak force will corrupt the feedback and can lead to a
tip-sample crash. As an alternative to the “online” analysis each force-distance curve
for each image point can also be stored and analyzed later (“off-line”). Of course
this means there is a large amount of data to be stored.

This approach to detect force data as a function of the tip-sample distance can
also be generalized to quantities other than the force. For instance, the phase can be
acquired as a function of x , y, and z. This approach generates a data volume which
has to be analyzed properly in order to extract useful information.

15.3 Summary

• In the peak force tapping mode thousands of force-distance curves are measured
per second, one at each image point. The z-feedback for topographic imaging uses
the maximal (peak) force as the signal. This force control allows sample and tip
damage to be minimized.

• Parameters characterizing the mechanical properties of the sample are extracted
from the force-distance curves. Corresponding maps of adhesion, indentation,
dissipation, stiffness and other parameters are obtained.
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Chapter 16
Frequency Modulation (FM) Mode in
Dynamic Atomic Force
Microscopy—Non-contact Atomic Force
Microscopy

In Chap.14 we introduced the intermittent contact mode (tapping mode), which is a
very successful operationmode in dynamic atomic forcemicroscopy. Since thismode
has somany advantages, why shouldwe use any othermode? In this chapter we intro-
duce the FM detection scheme (often named non-contact atomic force microscopy)
which in some cases has the following advantages over the tapping mode: (a) The
FM detection scheme can be used with high Q cantilevers (Q >1,000, occurring
in vacuum). For high Q cantilevers the tapping mode results in unacceptably long
measurement times. (b) The inelastic dissipation in the tip-sample interaction can
be easily measured during scanning. (c) From the measured data the tip-sample
force can be reconstructed as a function of the distance. (d) True non-contact atomic
resolution imaging can be performed (in vacuum without the contamination layer)
avoiding any repulsive tip-sample force and thus also avoiding wear.

In the FM detection scheme of AFM the cantilever does not oscillate at a fixed
driving frequency (as in the tapping mode), but always oscillates at resonance [1–
4]. If the resonance frequency shifts due to a tip-sample interaction, the cantilever
oscillation frequency follows this shift. In the FM mode, the amplitudes are often so
large that the tip-sample force cannot be approximated as linear. In spite of the non-
linear tip-sample force the resulting frequency shift can be calculated. The frequency
shift in the FM mode is proportional to a weighted average of the tip-sample force
over a cantilever oscillation cycle. For large amplitudes, the frequency shift depends
almost exclusively on the tip-sample interaction at the lower turnaround point. We
will describe in detail the experimental setup and the different FM detection modes
and compare the FM and AM detection modes.
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Fig. 16.1 Scheme of the cantilever vibration illustrating the corresponding coordinates

16.1 Principles of FM Detection in Dynamic Atomic Force
Microscopy

In the following, we will consider again a driven damped harmonic oscillator under
the influence of a conservative non-linear tip-sample force Fts(d + z), however, now
for the case that the oscillation frequency is always at resonance. The driving force
is given by an external sinusoidal oscillation zdrive = Adrive cos(ωt) of the cantilever
base. In FM detection, the driving at ωdrive is always applied at the actual resonance
frequency1 ω′

0, which we call ω in the following, i.e. ω = ωdrive = ω′
0. How it is

experimentally achieved that the cantilever oscillates always at the (shifting) reso-
nance frequencywill be explained in the next section. In the followingwe just assume
that the cantilever is always driven and oscillates always at its (shifted) resonance
frequency. The equation of motion for the driven damped harmonic oscillator with
an external tip-sample force Fts(d + z) added is written according to (13.4) as

mz̈ + mω0

Qcant
ż = −k(z − zdrive − �L) + Fts(d + z). (16.1)

The relevant coordinates are indicated in Fig. 16.1. The zero point for z (z = 0) is
given by the condition that the tip-sample force at z = 0 is compensated by the static
cantilever bending �L , cf. Fig. 13.1 and (13.1). In this case the tip-sample distance
is d.

In spite of the fact that a non-linear tip-sample force Fts(d + z) is included into
the equation of motion, the motion of the tip z(t) is in a very good approximation
a sinusoidal oscillation z(t) = A cos (ωt + φ), as known from experimental results
and simulations [5, 6]. Since the oscillation in FM mode is always at resonance,
φ = −90◦ and thus z(t) = A sin (ωt). We will not solve the equation of motion
(16.1), nevertheless, we will calculate the shift of the resonance frequency. The
relation between tip-sample force and frequency shift �ω will turn out to be more

1Under the influence of the tip-sample force the resonance frequency of the cantilever shifts from
the resonance frequency of the free cantilever, ω0, to ω′

0.
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complicated than the simple proportional relation between�ω and the force gradient
obtained in the small amplitude limit (13.10). For the case of the non-linear tip-
sample force, the final result will be that the frequency shift corresponds to a properly
weighted average of the tip-sample force over an oscillation period.

An expression for the frequency shift can be derived if we insert the explicit
expressions for the harmonic oscillation of the cantilever z(t) and its derivatives
as well as the expression for zdrive into (16.1). Subsequently we multiply (16.1) by
z(t) = A sinωt and integrate over one period resulting in the following expression

−
T∫

0

mω2A2 sin2 ωt dt +
T∫

0

mω0

Qcant
A2ω cosωt sinωt dt +

T∫

0

k A2 sin2 ωt dt

−
T∫

0

k AdriveA cosωt sinωt dt −
T∫

0

k�L A sinωt dt

=
T∫

0

Fts(d + z(t))A sinωt dt. (16.2)

Since the integral of cosωt sinωt over one period vanishes, the second and fourth
terms on the left side in (16.2) vanish. The last term on the left side vanishes as well,
since it is proportional to an integral of sinωt over one period. Thus, (16.2) can be
written as

(k − mω2)A2

T∫

0

sin2 ωt dt =
T∫

0

Fts(d + z(t))A sinωt dt. (16.3)

The integral
∫
sin2 ωt dt within the limits from 0 to T can be calculated as 1

2T = π
ω
,

which results in

(k − mω2)A2 π

ω
=

T∫

0

Fts(d + z(t))A sinωt dt. (16.4)

The left hand side of (16.4) can be further evaluated as follows

A2π

ω

(
k − mω2

) = A2mπ

ω

(
k

m
− ω2

)

= A2mπ

ω

(
ω2
0 − ω2

) = A2mπ

ω
(ω0 + ω) (ω0 − ω) . (16.5)
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Since the tip-sample force is considered as a small perturbation, the frequency shift
will be small as well, i.e. ω ≈ ω0 and (ω0 + ω) ≈ 2ω. Thus, the left-hand side of
(16.4) can be further written as

2πmA2(ω0 − ω) = −2πmA2�ω = −4π2mA2� f. (16.6)

Now also taking the right-hand side of (16.4) into account the following expression
for the frequency shift arises

� f = − 1

4π2mA2

T∫

0

Fts(d + z(t))A sinωt dt. (16.7)

The time average of Fts(t) times z(t) over one period can be written as

〈Fts(t) · z(t)〉 ≡ 1

T

T∫

0

Fts(d + z(t))A sinωt dt. (16.8)

Using the above equation, (16.7) can be rewritten as the following expression for� f
(using T = 1/ f0 and m = k/ω2

0)

� f = − f0
A2k

〈Fts(t) · z(t)〉. (16.9)

The frequency shift is proportional to 〈F · z〉, which is the time average of force
times distance over one oscillation period. The dependence as f0/k on the resonance
frequency and the spring constant is the same as in the small amplitude limit (13.11).
In contrast to the case of small amplitudes, the frequency shift depends as 1/A2 on the
oscillation amplitude. If the force is split into an even and an odd contribution (see
Sect. 14.5), the contribution of an odd (dissipative) force 〈Fodd

ts (t) · z(t)〉 vanishes
and thus only the contribution due to an even (conservative) force contributes as
〈Fts(t) · z(t)〉 = 〈Feven

ts (t) · z(t)〉.
As a consistency check we insert the force for a harmonic oscillator Fts = −k ′z

as an approximation in the case of the small amplitude limit. This results in

〈Fts · z〉 = −〈k ′ · z2〉 = 1

T

T∫

0

−k ′A2 sin2 ωt dt = −1

2
k ′A2, (16.10)

which recovers the result of the frequency change found for the small amplitude limit
� f = f0k ′/(2k) (cf. (13.11)). In analogy to this result for the small amplitude limit
an effective tip-sample spring constant can generally be defined as
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k ′ ≡ −2〈Fts · z〉
A2

, (16.11)

in order to recover from (16.9) an equation of the same form as in the small amplitude
limit � f = f0k ′/(2k).

16.1.1 Expression for the Frequency Shift

When analyzing the time average in (16.8) qualitatively, it can be seen that the parts
of the oscillation path which make the largest contribution to the frequency change
are the turnaround points. Here the velocity is lowest, so the tip stays longest at these
positions (strongest contribution to the integral over time). The equilibrium position
is passed quickly at the largest velocity, leading to a small contribution to the time
average. This dominant contribution of the turnaround points can be obtained more
quantitatively if we replace the time average in (16.8) by a spatial average. A spatial
average over the positions of the tip in one oscillation cycle is also more appropriate
because the tip-sample force is primarily a function of tip-sample distance. For the
average 〈F · z〉 we wrote in (16.8)

〈Fts(d + z(t)) · z(t)〉 = 1

T

T∫

0

Fts(d + z(t)) · z(t) dt, (16.12)

with z(t) = A sinωt . In order to convert the time average to a spatial average over
the trajectory, we substitute in (16.12) the variable t by z as

dz

dt
= Aω cosωt = Aω

√
1 − sin2 ωt = ω

√
A2 − z2. (16.13)

Due to the square root this substitution is only valid for positive values of cosωt
and we split the integral over the whole oscillation period in twice the integral over
the halve period from the lower turnaround point to the upper one (as the tip-sample
force is even with respect to the lower turnaround point).With the above substitution,
the average 〈F · z〉 can be written as

〈Fts(d + z) · z〉 = 1

T

T∫

0

Fts(d + z(t)) · z(t) dt (16.14)

= 2

ωT

+A∫

−A

Fts(d + z) · z√
A2 − z2

dz

= 1

π

+A∫

−A

Fts(d + z) · z√
A2 − z2

dz.
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Combining (16.9) and (16.14) the following expression for the frequency shift is
obtained

� f = − f0
πk A2

+A∫

−A

Fts(d + z)
z√

A2 − z2
dz = f0

πk A2

+A∫

−A

Fts(d + z)g(z)dz. (16.15)

This can be interpreted as the integral of the tip-sample force from −A to A with
a weighting function g(z). Due to this weighting function, the largest contributions
to the frequency shift come from the regions close to the turnaround points of the
oscillation z = ±A. Here the weighting function diverges (denominator becomes
zero) as seen in Fig. 16.2a. From the weighting function alone a large contribution
to the frequency shift is expected at both turnaround points. However, the second
factor in the integrand of (16.15), the tip-sample force Fts, must also be considered.
For the situation of a large amplitude shown in Fig. 16.2a the contribution to the
frequency shift at the upper turnaround point z = A is eliminated by the vanishing
tip-sample force Fts. The product of weighting function and tip-sample force, i.e.
the integrand of (16.15) is shown as a green line in Fig. 16.2a. In total, for large
amplitudes the contributions to the frequency shift come only from regions close
to the lower turnaround point, while the major part of the oscillation path does not
result in a contribution to the frequency shift.

The case of a smaller oscillation amplitude is shown in Fig. 16.2b. For better
comparability, the lower turnaround point of the oscillation was placed in the same
position as inFig. 16.2a. In this case, the integrandof (16.15) provides contributions to
all parts of the oscillation cycle, since the force has appreciable values throughout the
oscillation. The largest contributions to the frequency shift arise fromboth turnaround
points, as shown by the green line in Fig. 16.2b.

Thismeans that for smaller oscillation amplitudes a stronger frequency shift signal
is expected. In addition to this contribution from the integral in (16.15) also the
prefactor 1/A2 enhances the frequency shift for small amplitudes. If we compare
this amplitude dependence of the frequency shift in the previously treated small
amplitude limit (13.11), we note that in this case the frequency shift was found to
be independent of the oscillation amplitude. The strength of the signal is one issue,
another is the corresponding noise, which also increases with decreasing amplitude,
as will be discussed in Chap. 17. Together, the important figure of merit, the signal-
to-noise ratio, will be obtained (see Sect. 17.9).

Due to the antisymmetric behavior of the weighting function with respect to the
point of origin of the oscillation, a constant force will not lead to a frequency shift.
This corresponds to the result also obtained in the small amplitude limit that a constant
force induces no frequency shift.

Often the total tip-sample force is considered as a superposition of different force
contributions. Since the force enters linearly in the integral (16.15) the total frequency
shift can be split into contributions arising from the individual forces.
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Fig. 16.2 The tip-sample
force (blue), the weighting
function g(z) (red), and their
product (green) are displayed
as a function of distance z
for two different oscillation
amplitudes A. In the large
amplitude limit
a the frequency shift signal is
mainly picked up close to the
lower turnaround point of the
oscillation, while in the
smaller amplitude case
b contributions to the
frequency shift are picked up
during the whole oscillation
cycle with the main
contributions coming from
both turnaround points. For
better comparison, the lower
turnaround point is kept
constant in (a) and (b)
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The expression for the frequency shift (16.15) can be further evaluated with inte-
gration by parts. This results in

� f = − f0
πk A2

⎛
⎝−Fts(d + z)

√
A2 − z2

∣∣∣∣
+A

−A

+
+A∫

−A

∂Fts(d + z)

∂z

√
A2 − z2dz

⎞
⎠ .

(16.16)
As the first term in (16.16) vanishes, the following expression for the frequency shift
is obtained

� f = − f0
2k

+A∫

−A

∂Fts(d + z)

∂z

√
A2 − z2

1/2πA2
dz. (16.17)

This corresponds to a weighted average of the tip-sample force-gradient, where
the weighting function is a semicircle with a radius A divided by the area of the
semicircle. This expression for the frequency shift is very similar to expression for
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the small amplitude limit (13.11), only instead of the tip-sample force gradient at
the position z = 0 a weighted average of the force gradient over the oscillation path
enters.

16.1.2 Normalized Frequency Shift in the Large Amplitude
Limit

Up to now the coordinates have been chosen such that the reference for the position
of the cantilever tip z was the equilibrium position of the cantilever (Fig. 16.1). This is
the position in which the tip-sample force is compensated by the static bending force
of the cantilever, also called the average tip position. Often, the lower turnaround
point of the oscillation is a more useful reference point. Therefore, we now choose
as a new distance variable u = z + A in order to describe the tip position relative to
the lower turnaround point (Fig. 16.1). If we substitute z = u − A and express the
tip-sample distance as d + z = d − A + u the frequency shift (16.15) results in

� f = − f0
πk A2

2A∫

0

Fts(d − A + u)(u − A)√
A2 − (u − A)2

du

= − f0
πk A2

2A∫

0

Fts(d − A + u)(u − A)√
(2A − u)u

du. (16.18)

In the following, we consider the limit of a large oscillation amplitude, i.e. the
oscillation amplitude A is much larger than the range of the tip-sample force. In this
case the integrand in (16.15) or (16.18) has appreciable values only at tip positions
very close to the lower turnaround point, as also indicated by the green line in
Fig. 16.2a. The integrand Fts · g becomes negligible for larger values of u which,
however, are still much smaller than A. Therefore, we take the limit u 	 A and
extend the integration limit to infinity, which results in

� f = f0
πk A2

∞∫

0

Fts(d − A + u)A√
2Au

du = f0√
2πk A3/2

∞∫

0

Fts(d − A + u)√
u

du .

(16.19)

The dependences on resonance frequency and spring constant are the same as for
the small amplitude limit (13.11). Furthermore, the frequency shift is proportional to
A−3/2. Unlike the original integral in (16.18) the integral in (16.19) does not depend
on the oscillation amplitude, due to the large amplitude limit.
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The expression for the frequency shift in (16.19) contains two contributions. The
frequency shift depends on the tip-sample force and also on the cantilever parameters
and experimental parameters. This allows to separate these parameters from the
integral over the tip-sample force by defining a normalized frequency shift γ as

γ = � f
k A3/2

f0
. (16.20)

The normalized frequency shift has the following significance:Multiplying the exper-
imentallymeasured frequency shift� f by the factor k A3/2/ f0, the expression (16.19)
can be written as

γ = 1√
2π

∞∫

0

Fts(d − A + u)√
u

du . (16.21)

The normalized frequency shift depends only on an integral over the tip-sample force
(which is also independent of the amplitude), while the dependence on the parameters
k, f0, and A is factored out.

The normalized frequency shift is particularly useful in order to compare exper-
imental results obtained using different cantilevers (with different spring constants,
and resonance frequencies) or results obtained using different oscillation amplitudes.
The influence of all these parameters is factored out using the normalized frequency
shift. In Fig. 16.3a measurements on a graphite sample are shown. The frequency
shift is plotted as a function of tip-sample distance. Different frequency shift curves
are obtained, for different oscillation amplitudes (always using the same cantilever).
According to the previously obtained dependence, the measured frequency shift
increases with decreasing oscillation amplitude. In Fig. 16.3b the normalized fre-
quency shift is plotted, showing that all curves for different amplitudes collapse to
one curve. This demonstrates the usefulness of the normalized frequency shift.

Now we evaluate the normalized frequency shift for a very simple model force
which has a constant value of F0 from the lower turnaround point up to a distance λ
and is zero for larger distances. For this case, the normalized frequency shift can be
evaluated using (16.21) as

γ = F0√
2π

λ∫

0

u−1/2du =
√
2

π
F0

√
λ. (16.22)

To give some numbers: For f0 = 200kHz, F0 = 2nN, A = 10nm, k = 10N/m and
λ = 0.1nm a normalized frequency shift of 9 fN

√
m results, corresponding to a

frequency shift of � f = 180Hz. For an exponentially decaying force

F(z) = F0e
−u/λ, (16.23)
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Fig. 16.3 a Experimentally measured frequency shift on a graphite sample as a function of the
average tip-sample distance d for different values of the oscillation amplitude. The curves are shifted
along the horizontal axis in order to make them comparable [3]. b If the normalized frequency shift
is used as vertical axis, all curves for different amplitudes collapse to one curve, showing that the
normalization has factored out the dependence on the amplitude (Reproduced with permission
from [3])

the corresponding normalized frequency shift (16.21) can be calculated in the large
amplitude limit as [7]

γ = 1√
2π

F0

√
λ, (16.24)

which is (apart from a constant factor) the same result as obtained for a constant
force F0 with a range λ, shown in (16.22). Also for other forms of the tip-sample
interaction, such as the Lennard–Jones interaction, the normalized frequency shift
can be found in the literature [7].

16.1.3 Recovery of the Tip-Sample Force

In this chapter, we have derived equations of the (normalized) frequency shift for a
given tip-sample force. Actually the reverse is desirable: It is desirable to recover
the tip-sample force from the measured frequency shift. However, due to the integral
present in (16.15) this equation cannot easily be inverted analytically to a solution
for Fts(� f ). In the small amplitude limit the obtained equation

� f (d) = − f0
2k

∂Fts(d + z)

∂z

∣∣∣∣
z=0

, (16.25)
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can be inverted to

Fts(d) = 2k

f0

∞∫

d

� f (z′)dz′. (16.26)

The integration up to infinity shows that the frequency shift should be measured
up to a position relatively far from the surface. For larger oscillation amplitudes,
(16.15) can be inverted using approximations which allow the determination of the
force with an accuracy of ∼5% [8, 9]. The use of a dynamic AFM mode in order to
determine the tip-sample force, instead of the force-distance curves in static AFM,
has also the advantage that no snap-to-contact occurs.

16.2 Experimental Realization of the FM Detection Scheme

We havementioned that in the FM detectionmode the cantilever oscillation is always
at resonance, i.e. it always follows the resonance frequency which changes under the
influence of the tip-sample force. Now we will describe how this is achieved by the
experimental setup. In this section, we introduce detection schemes which are used
in the FM detection mode. Here it is not the amplitude change that is measured in
response to a shift of the resonance frequency, but rather the shift of the resonance
frequency itself is measured.

16.2.1 Self-Excitation Mode

In the self-excitation mode no external oscillator is used, but the cantilever itself as
a oscillator is the frequency-determining element in an electronic oscillator circuit.
A positive feedback is used in order to self-excite the cantilever. A schematic of
the implementation (Fig. 16.4) consists of an oscillator loop in which the measured
oscillation signal is fed back (after a phase shift) as the driving signal of the cantilever.
Wewill first discuss some essentials of this oscillator feedback loop and subsequently
discuss its experimental realization. In addition to this oscillator feedback loop, the
measured frequency shift of the resonance frequency � f is used in an outer z-
feedback feedback loop in order to control the tip-sample distance.

In a mechanical harmonic oscillator which is oscillating at resonance there is a
−90◦ phase shift of the displacement of the cantilever tip relative to the mechanical
excitation, i.e. the cantilever oscillation is laggingbehind the excitation. Thedetection
of the cantilever deflection (by the photodiode and the preamplifier in the current
example) is so fast that the deflection signal is sampled many times during one
oscillation period. In the self-excitation scheme the measured cantilever oscillation
signal is fed back as the excitation signal into the cantilever driving the piezo actuator
(Fig. 16.4). In order to excite the cantilever with the correct resonance phase, a phase
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Fig. 16.4 Schematic of an FMdetection setup operated in the self-excitationmode. In the circuit the
measured cantilever oscillation signal is phase shifted (compensating the −90◦ phase shift between
excitation and oscillation) and fed back to the piezo actuator driving the cantilever. In addition to
this (inner) oscillator feedback loop, the measurement of the shift of the resonance frequency � f
is used in an outer z-feedback feedback loop in order to control the tip-sample distance

shift of +90◦ has to be applied to the oscillation signal before feeding it back as
the driving signal.2 This phase shift “compensates” the −90◦ phase shift between
mechanical excitation and oscillation of the cantilever. For simplicity, we neglect
now all other phase shifts present in the loop, for instance in the preamplifier.

If due to a tip-sample interaction the resonance frequency of the cantilever
changes, the cantilever oscillation will adapt to this new resonance frequency (how
fast this process occurs we will be discussed below). Since the driving in the self-
excitation mode is performed using the (shifted) cantilever oscillation, the cantilever
will be always driven at its shifted resonance frequency. If additionally the phase
of the signal driving the oscillator is −90◦, this means that the oscillator is auto-
matically always fed at the resonance condition (frequency and phase). Thus, the
oscillation frequency tracks (follows) the shift of the resonance frequency and the
self-excitation mode maintains oscillation always at the resonance frequency.

Since there is no external oscillator included driving the cantilever, the question
arises as to how the cantilever oscillation is excited in the first place. The cantilever is
thermally excited in a broad frequency range. Thermal excitation can be considered
as white noise, i.e. having frequency components at all frequencies (cf. Chap. 17).
If a frequency component of the thermal noise does not “hit” the resonance, the
oscillation amplitude at this frequency will be small. The frequency component of
the white noise which “hits” the resonance will be amplified Q times due to the
resonance enhancement (transfer function) of a harmonic oscillator at the resonance

2The technical realization of the phase shift depends on the actual implementation. It is easy to
write �φ = +90◦, but this has to be realized in practice. Let us assume that in a digital electronics
the phase shift is implemented by a corresponding time delay of the oscillation signal.
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frequency. Therefore, while uniformly excited over a wide frequency range by ther-
mal noise, a large oscillation amplitude occurs only at the resonance frequency. Due
to this resonance enhancement the self-excitation mode self-excites its oscillation
at the resonance frequency from thermal noise. This self-excitation works best for
cantilevers with high quality factors. In the case of systems with low quality factors
(like measurements in liquids), starting the self-exciting oscillation is a problem.
Also if the cantilever has multiple resonances, the self-excitation mode can be a bad
choice. These problems are overcome in the PLL tracking mode of FM detection,
which will be discussed in Sect. 16.2.3.

Another question is: How fast does the oscillation of the cantilever follow a
change of the resonance frequency in the self-excitation mode? Let us assume an
instantaneous change of the resonance frequency of the cantilever due to a change of
the tip-sample interaction. For the case of AM detection, we have seen in Sect. 13.5
that after a change of the resonance frequency of the cantilever the new steady-state
amplitude and phase are reached only after a large time constant τcant = 2Q/ω0,
corresponding to about Q oscillations.

The reason for the occurrence of the response time is that it takes time to transfer
energy into, or remove energy from, the cantilever system during a transition to a new
state with different amplitude/frequency. In order to see why the shifted resonance
frequency is adapted very fast in the FM AFM mode, compared to the adaption of
the new amplitude in the AM mode, let us compare the change of the energy of the
cantilever oscillation upon a change of the resonance frequency in both cases.

The energy difference between the free oscillator and the state with tip-sample
interaction present is compared for the two cases AM detection and FM detection.3

In the AM mode (e.g. tapping mode), a typical setpoint amplitude is 90% of the
free amplitude. The energy difference between the free oscillator and the oscillator
with tip-sample interaction present results as

�EAM = Efree − Ets = 1

2
mω2

0 A
2 − 1

2
mω2

0(0.9A)2 = 0.19 Efree. (16.27)

In FM detection, the change of the energy occurs due to a change of the oscillation
frequency, not the amplitude, which is kept constant in FM detection. A change of
the resonance frequency from ω0 to ω′

0 leads to an energy change of

�EFM = Efree − Ets = 1

2
mω2

0 A
2 − 1

2
mω′2

0 A2

= 1

2
mω2

0 A
2

(
1 − ω′2

0

ω2
0

)
≈ Efree

2�ω

ω0
. (16.28)

3This transition from the free state to the state with tip-sample interaction present (working point)
gives an upper limit for energy changes occurring during scanning. Deviations from the setpoint
values (amplitude/frequency shift) under feedback operation are smaller than the deviations in
amplitude/frequency shift between the free cantilever and the situation with tip-sample interaction
present.
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Typical values for the frequency shift in the FM detection mode are �ω/ω0 = 10−4.
Due to the small frequency shifts involved, the energy difference in FMmode is very
small. According to (16.28) the energy change between the free cantilever and the
cantilever under tip-sample interaction is 2 × 10−4Efree in the FM mode, which is
thousand times smaller than in the AM mode according to (16.27).

According to the definition of the Q-factor in (2.44), a damped harmonic oscillator
can gain/lose roughly 1/Qth of its energy in per cycle Ediss = 2πEosc/Q. Thus, for
a Q factor of 10,000 an energy of 6 × 10−4Eosc can be dissipated per cycle, which
is three times more than the energy change occurring in the FM mode. Hence the
FM mode is not limited by slow response times for high Q-factors occurring for
operation under vacuum conditions, as is the case for AM detection.

The fundamental reason for the slow response in AM detection is that a large
energy change is required in order to change the amplitude, while in the FM detec-
tion scheme the energy change due to a change of the oscillation frequency of the
sensor is much smaller. This energy can be easily supplied or dissipated by the
driving excitation within one oscillation cycle. This fast adaption to a new shifted
resonance frequency leads to an intrinsically very high bandwidth of the FM detec-
tion scheme. However, to detect a frequency shift of e.g. �ω = 10−4ω0 and below
will require a certain measurement (averaging) time which reduces the intrinsically
high bandwidth.

The self-excitation mode offers the fastest possible tracking of a shift of the
resonance frequency, not limited by an external electronics as in the case of the
tracking mode which will be considered in Sect. 16.2.3.

After clarifying the fundamental issues i.e. phase shift of +90◦ in order to main-
tain the resonance phase, self-excitation of the oscillator from thermal noise, and
the tracking of the shifted resonance frequency, we now discuss the experimental
realization of the outer z-feedback loop.

As discussed above, in the self-excitation mode the frequency of the cantilever
oscillation automatically follows the resonance frequency of the cantilever. This
frequency shift is measured by the frequency measurement unit in Fig. 16.4. We
will go into the details of the frequency measurement later. For the moment let us
assume that the frequency measurement unit delivers a voltage signal proportional
to the frequency shift. This frequency shift signal is used as the feedback signal in
order to control the tip-sample distance (z-feedback) in a second (outer) feedback
loop. A fixed frequency shift is chosen as the setpoint and corresponds to a certain
tip-sample distance. During an xy-scan a height contour of constant frequency shift
is considered as the topography of the sample.

16.2.1.1 Amplitude Control and Dissipation

In FM detection, conservative and dissipative tip-sample interactions can be mea-
sured separately. The conservative part is measured via the measurement of the
frequency shift, as discussed above. A dissipative tip-sample interaction leads to
a reduction of the amplitude at resonance, but does not change the resonance fre-
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quency, as discussed in Sect. 13.6 (Fig. 13.10) for the case of a harmonic oscillator.
Therefore, in FMdetection the conservative tip-sample interaction and the dissipative
tip-sample interaction can be separated by measuring the frequency shift on the one
hand, and the amplitude change on the other hand. In the actual implementation, the
oscillation amplitude is controlled to a fixed value by adjusting the driving amplitude.
If energy is dissipated by the tip-sample interaction the oscillation amplitude would
decrease. However, an increased driving amplitude will restore the desired (setpoint)
oscillation amplitude. This amplitude-controlling part of the self-excitation scheme
is included in the setup shown in Fig. 16.5.

In order tomaintain the oscillation amplitude at a certain setpoint value, the follow-
ing scheme is applied. The amplitude of the cantilever oscillation signal is measured
by an amplitude detection scheme (amplitude measurement block in Fig. 16.5). In a
simple implementation an RMS-amplitude-to-DC converter can be used, in which
the signal is rectified and low-pass filtered, resulting in a DC voltage proportional to
the oscillation amplitude. The difference of this DC voltage to the amplitude setpoint
value is taken as the error signal for an amplitude PI controller. The phase-shifted
driving signal is multiplied by the appropriate amplitude factor obtained from the
amplitude PI controller. In this way a constant cantilever oscillation amplitude is
maintained by adjusting the amplitude of the driving signal.

The amplitude multiplication factor in the amplitude control depends on the tip-
sample dissipation energy as follows. If energy is lost by an increasing tip-sample
dissipation, the oscillation amplitude decreases. This is detected by the amplitude
detection unit and compared to the desired amplitude setpoint. The output of the
amplitude control unit (PI controller) is a multiplication factor by which the driving
signal is multiplied in order to generate a constant cantilever oscillation amplitude.
Therefore, this amplitude multiplication voltage can also serve as an output signal
related to the dissipation. This dissipation signal can be recorded as a free signal dur-
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Fig. 16.5 Schematic of an FMdetection setup operatedwith self-excitation including the amplitude
control part. The cantilever oscillation amplitude is measured and maintained at a setpoint value
by multiplying the driving signal by a proper multiplication factor. This factor relates to the energy
dissipated by the tip-sample interaction
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ing a scan. The relation between the oscillation amplitude and the energy dissipated
by the tip-sample interaction is given by (14.19) with φ = +90◦.

The+90◦ phase shift applied in the feedback circuit in order to drive the cantilever
at resonance is an idealization. In practice additional phase shifts of other components
(e.g. the preamplifier) in the circuit have to be compensated. The phase shift in the
unit called the phase shift in Fig. 16.5 is adjusted to the resonance condition (deviating
from +90◦) in such a way that a minimum driving amplitude is required in order to
establish a certain oscillation amplitude of the cantilever (resonance condition). If
this adjustment of the phase shift is done for the free cantilever (at ω0), It may be not
the completely proper shift at the actual working point at the frequency ω0 + �ω.

To summarize, in the self-excitation mode the oscillation signal is fed back as the
driving signal with a +90◦ phase shift maintaining both, resonance frequency and
resonance phase. This sustains an oscillation which always follows the resonance
frequency of the cantilever quasi instantaneously. The following actual measurement
of this frequency will be discussed next. The amplitude multiplication factor applied
to the measured oscillation signal provides information about the dissipation of the
tip-sample interaction.Due to amplitude control, the cantilever oscillates at a constant
amplitude. With high quality factor sensors, the oscillation will start by itself excited
by thermal noise.

16.2.2 Frequency Detection with a Phase-Locked Loop (PLL)

There are several ways to measure a frequency (shift). In FM AFM the phase-locked
loop detection (PLL) method is used often for this purpose, because with this method
frequency shifts can be measured with high accuracy in a wide frequency range. As a
starting point, we demonstrate that a change of the frequency of an oscillation can be
alternatively expressed as a time-dependent phase. If the frequency of an oscillation is
ω, the oscillation can be written as cos(ωt + φ0). If the oscillation frequency changes
at t = 0 form ω to ω + δω, the oscillation can be expressed as cos [(ω + δω) t + φ0].
However, alternatively this expression can be rewritten as

cos [(ω + δω) t + φ0] = cos [ωt + (δωt + φ0)] = cos (ωt + φ(t)) , (16.29)

with φ(t) = δωt + φ0. Thus, a frequency change can also be expressed as a time-
dependent phase φ(t) which increases linearly with time, as shown in Fig. 16.6. The
slightest frequency change corresponds to a linearly increasing phase signal. If the
phase φ(t) is constant, the two frequencies are exactly the same.

In the following, the inner working of the frequency shift measurement unit in
Fig. 16.5 will be explained for the case that a PLL is used for the frequency measure-
ment. In a PLL the frequency of an internal oscillator is controlled to match (follow)
the frequency of the sensor (e.g. cantilever) oscillation.

A PLL used in AFM is shown in Fig. 16.7 and consists of three main components:
a phase detector, a Voltage-Controlled Oscillator (VCO), and a controller. First we
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Fig. 16.6 The slightest frequency increase from ω to ω + δω leads to a linearly increasing phase
φ(t). This phase (difference) can be detected using a phase detector. If the phase difference is
maintained at zero, the two frequencies are the same
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Fig. 16.7 The phase-locked loop consists of three main components: a phase detector, a Voltage-
Controlled Oscillator (VCO) and a controller. These are combined to form a feedback loop in
which the phase detector detects the phase difference between the AC sensor oscillation signal
Vcant and the AC output signal (Vvco) of the VCO. The controller regulates the VCO frequency
to a vanishing phase signal (Vphase). This means that the VCO frequency adapts the sensor (e.g.
cantilever) frequency ωvco = ωcant and the phase between the cantilever oscillation and the VCO
signal is φ0 = +90◦. Thus, the frequency of the VCO follows the cantilever oscillation frequency
and a voltage proportional to the corresponding frequency shift Vδω is obtained at the output of the
controller and used for the z-feedback

introduce the phase detector and the VCO. Subsequently, their interaction in a phase-
locked loop is described.

In the phase detector (cf. Chap. 6), the phase of the cantilever oscillation signal
Vcant ∝ cos(ωcantt) is compared to the phase of the signal from the voltage-controlled
oscillator Vvco ∝ cos(ωvcot + φ0) and the relative phase φ(t) is detected. In the phase
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detector, the two signals aremultiplied and due to amathematical identity the product
can be written as

Vvco · Vcant ∝ 1

2
(cos [(ωvco + ωcant)t + φ0] + cos [(ωvco − ωcant)t + φ0]) .

(16.30)
The low-pass filter in the phase detector removes the component with the sum of the
frequencies. Thus, the signal at the output of the phase detector results as

Vphase ∝ cos [(ωvco − ωcant)t + φ0] = cos(δωt + φ0) = cos(φ(t)), (16.31)

with δω = ωvco − ωcant. The measured phase signal Vphase has the largest phase sen-
sitivity for a phase close to +90◦. Therefore, we consider Vphase = 0 as the working
point, corresponding to φ0 = +90◦. Relative to this working point, the cosine func-
tion has a slope of minus one and the phase signal can be approximated (for small
δωt) as Vphase ∝ −δωt . Including a proportionality factor Kpd which converts the
phase into a voltage, the output voltage of the phase detector can be written as

Vphase = Kpd cos (δωt + 90◦) ≈ −Kpdδωt. (16.32)

We do not consider the inner working of the voltage-controlled oscillator (VCO)
here. For us the VCO is just a block in which the input voltage Vδω controls the output
frequency linearly relative to the working frequency as

ωvco = ωwork − KvcoVδω, (16.33)

with the proportionality factor Kvco, converting the input voltage Vδω to a frequency
shift relative to the working frequency (The minus sign in (16.33) is chosen, as a
positive frequency shift δω leads according to (16.32) to a negative phase voltage.).
The working frequency is the frequency of the free cantilever ωwork = ωfree.

Now we discuss the frequency tracking capability of the PLL. For the moment,
we do not consider the PI controller shown in Fig. 16.7 and assume that the phase
signal Vphase is directly fed into the input of the VCO, i.e. Vδω = Vphase. Let us
assume that initially the frequency of the VCO matches the oscillation frequency of
the cantilever, ωvco = ωcant = ωwork and φ0 = +90◦. At the working point Vphase = 0
and thus δω = 0. In this case also the input voltage at the VCO vanishes, i.e. Vδω = 0.

Now we consider an increase of the actual oscillation frequency of the cantilever
ωcant, to ω′

cant by δω, e.g. due to a change in the tip-sample interaction. According
to (16.32) this increase of the frequency by δω leads to a phase signal measured by
the phase detector Vphase ≈ −Kpdδωt , which evolves linearly with time. With this
input, the output frequency of the VCO increases according to (16.33) and since
Vδω = Vphase as

ωvco = ωwork − KpdKvco cos (δωt + φ0) ≈ ωwork + KpdKvcoδωt. (16.34)
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According to (16.34), a linearly increasing phase δωt leads to an increasing ωvco.
This reduces the frequency difference δω between the cantilever frequency and the
frequency of the VCO. For a varying δω(t) the term δω in (16.34) should be replaced
by the integral

∫
ω(t)dt . The closer ωvco comes to ω′

cant (decreasing δω), the smaller
is the contribution to the integral. Any remaining finite frequency mismatch δω leads
over time to an increasing phase δωt bringing the VCO frequency closer to ω′

cant.
In this way, the VCO frequency adapts to the increased frequency of the cantilever
ωwork + δω. Due to this mechanism the VCO frequency is said to be locked to the
cantilever frequency. In the steady-state ωvco = ωcant and the frequency mismatch
δω vanishes.

In the terminology of the PLL: The VCO frequency is locked to the cantilever
oscillation frequency by a phase comparison of both signals in a feedback loop.
Hence, the name phase-locked loop. In this way, the PLL measures the frequency
of the AFM sensor as the voltage Vδω . This voltage, which is proportional to the
frequency shift δω, is used in the z-feedback loop to control the tip-sample distance.
A certain tip-sample distance corresponds to a certain frequency shift voltage Vδω ,
which is kept constant by the z-feedback loop (Fig. 16.5).

The original cantilever signal is a high-frequency signal close to ω0, which is
modulated to slightly lower or higher frequencies (at a much lower frequency) by
the tip-sample interaction, for instance during scanning of an atomic corrugation (yet
without z-feedback). The PLL converts (demodulates) thismodulated high frequency
signal to a low frequency signal proportional to the frequency modulation of the high
frequency signal. This is called FM demodulation and also occurs in an FM radio
receiver, where a high-frequency carrier signal is modulated by a low-frequency
audio signal and the demodulation of the audio signal is desired.

Up to now we have concentrated on the frequency tracking capability of the PLL,
while we turn now to the offset phase difference φ0. Remember, that two frequencies
are the same, if the relative phase is constant, not necessarily+90◦. If at a time t0 the
frequency of the VCO has adapted completely to the cantilever frequency (assumed
to be increased by δω), a constant phase offset, different from +90◦, can be present
between both oscillations. However, the value φ0 = +90◦ is desired, because it leads
to maximum sensitivity of the phase detector.

The PI controller unit of the PLL maintains the desired φ0 = +90◦ as follows.
Any deviation from the working point of maximum phase sensitivity φ0 = +90◦
leads, according to (16.31) to a finite Vphase (even if δω = 0). Thus, the PI controller
enforces a vanishing Vphase signal, by the setpoint value Vphase = 0. The PI controller
controls the offset phase φ0 to the desired value of +90◦ between Vcant and Vvco by
generating an appropriate controller output signal Vδω .

16.2.3 PLL Tracking Mode

We have considered the cantilever as an ideal harmonic oscillator. Due to the non-
ideal properties of the mechanical cantilever oscillator, the cantilever oscillation can
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Fig. 16.8 Schematic of an FM AFM control in the PLL tracking mode. In this mode, the sensor is
excited by a very clean sinusoidal driving signal taken from the voltage-controlled oscillator (VCO)

deviate from the ideal sinusoidal shape. Moreover, a cantilever and the whole AFM
is a 3D object that has many modes which can sometimes be located at frequencies
close to each other. An excitation of modes close to the desired resonance frequency
can also lead to deviations from a clean sinusoidal oscillation. In order to feed the
cantilever with a very clean sinusoidal signal (also free of noise from the detection
system), at the correct frequency and phase, the PLL tracking mode is often used
instead of the self-excitation mode.

In the PLL tracking mode, the signal at the output of the VCO, which has a very
clean sine shape, is used to excite the cantilever (Fig. 16.8). The cantilever deflection
signal (sensor signal) is fed to the input of the PLL (we neglect the amplitude control
for the moment). Due to the phase setpoint of the feedback controller Vphase = 0, the
VCO delivers a signal which is +90◦ phase shifted relative to the oscillation signal,
resulting in a driving at resonance. In order to compensate for for additional phase
shifts in the loop, another phase shift is applied to the VCO signal driving the sensor
(phase shift unit in Fig. 16.8).

This mode of operation corresponds to the same (resonance) phase relation as
in the self-excitation mode, however realized in a somewhat more indirect way via
the PLL. Due to this, the time constant of the PLL electronics enters: the time to
detect the changed resonance frequency plus the time to generate the corresponding
driving signal. However, also in the tracking mode the cantilever excitation occurs at
resonance (frequency and phase), like in self-excitation. Also in the tracking mode
the response is not limited by the large Q-dependent time constant τcant = 2Q/ω0

present in the AM detection mode.
The PI controller in the PLL loop (Fig. 16.8) is of specific importance if the VCO

excites a harmonic oscillator (the cantilever), as is the case in the PLL tracking
mode. Without the PI controller, any frequency deviation from the working point
by δω leads to a phase offset φ0 different from +90◦. Specifically for cantilevers
with high Q-factors, even small frequency shifts lead (according to (Fig. 2.5)) to
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a large phase shift driving the cantilever at a phase different from +90◦, i.e. out
of the resonance condition. The required driving of the cantilever at resonance is
maintained by the use of a PI controller in the PLL. Using the PI controller in the
PLL loop, the phase signal (Vphase = cos (δωt + φ0)) is kept at zero by delivering
a proper Vδω signal. Thus, with a PI controller both the phase shift of φ0 = +90◦
(driving the cantilever at resonance) as well as tracking the VCO frequency to the
cantilever frequency (δω = 0) are maintained.

The oscillation amplitude control is usually implemented in the sameway as in the
self-excitation mode. In a variant of the PLL tracking mode the oscillation amplitude
is not kept at a constant value, but the sensor excitation amplitude is set to a fixed
value. This mode is called constant excitation mode.

16.3 The Non-monotonous Frequency Shift in AFM

FM detection can be operated both in the attractive and also in the repulsive regime
of the tip-sample force. This advantage also involves a disadvantage. The measured
property, the frequency shift, depends non-monotonously on the tip-sample distance,
as can be seen in Fig. 16.3a and schematically in Fig. 16.9a.Due to this, the tip-sample
distance can only be controlled by the feedback in a certain range of distances. As
shown in the following, instabilities occur outside of this range.

In tapping mode AFM the measured signal (oscillation amplitude) increases
monotonously (approximately linear) with increasing tip-sample distance
(cf. Fig. 14.2). This leads to stable feedback, i.e. the feedback controller “knows
what to do”. If the oscillation amplitude becomes smaller (e.g. due to moving over
a step edge), the tip has to be withdrawn from the sample in order to recover the
desired amplitude setpoint. A severe problem arises if the measured signal changes
in a non-monotonous way with the tip-sample distance.

Let us assume that stable feedback is established at the tip-sample distance d1 in
the attractive regime at the frequency setpointω1 (working point 1 in Fig. 16.9a). Here
the frequency shift �ω(d) has a positive slope. Due to some event, like a steep step
edge, the tip-sample distance can potentially decrease suddenly to d2, corresponding
to a frequency ω2 (assumed to be smaller than ω1). The feedback would now try
to restore the setpoint frequency (shift) ω1. However, due to the opposite slope of
the frequency shift at point 2, the feedback moves the tip closer and closer to the
surface. The feedback “thinks” the tip has to be moved towards the sample in order
to restore the more negative frequency shift ω1. This will lead to a catastrophic event
(positive feedback) in which the tip crashes into the sample up to the maximum range
the z-piezo element can extend. The change from one branch of the frequency shift
curve to that of the opposite slope can occur for various reasons: a steep slope in
the surface topography, a protrusion on the surface, noise in the measurement signal
and a material dependent lateral change of the interaction potential (i.e. a branch of
opposite slope is reached at a different material on the sample, cf. Fig. 13.6).
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Fig. 16.9 Instabilities arise due to the non-monotonous dependence of the measured frequency
shift as a function of the tip-sample distance. a A stable working point 1 (at a tip-sample distance
d1) in the attractive regime can be left, for instance due to a fast scan over a steep step edge (inset).
This moves the system to a new working point at d2 (before the feedback acts) with opposite slope
of the frequency shift, leading to a wrong direction of the subsequent feedback action and to a crash
of the tip into the surface. b Catastrophic events can be prevented by using the absolute value of the
frequency shift as the signal for the feedback. Also in this case, the working point at d1 is lost if the
tip-sample distance changes suddenly to d2, but instead of a catastrophic tip crash a stable working
point in the repulsive branch at d3 is reached

Stable feedback can be provided only for a range in which the measured sig-
nal monotonously increases (decreases) with the tip-sample distance. One way to
improve the situation is not to use the frequency shift, but the absolute value of the
frequency shift �ω as the feedback signal, as shown in Fig. 16.9b [10, 11]. If here
the working point at d1 is left, also an instability occurs in the region of opposite
(positive) slope, for instance at point 2. However, in this case no catastrophic event
occurs since the tip approaches the surface only until stable feedback is resumed in
the branch with a negative slope and an unintended, but stable working point 3 is
reached at distance d3 instead of d1. Thus, using the absolute value of the frequency
shift signal avoids catastrophic tip crashes and stabilizes the feedback, when moving
to the branch of opposite slope in the repulsive regime. However, the intended work-



16.3 The Non-monotonous Frequency Shift in AFM 283

ing point in the attractive regime will be replaced by a working point in the repulsive
regime.

Another way to cope with this non-monotonous frequency shift is to work in the
constant height mode. In this case no instability will occur, since the feedback is
off. However, the constant height mode can be operated only for very flat surfaces
and under very stable conditions where drift does not change the height, i.e. at low
temperatures.

16.4 Comparison of Different AFMModes

In the previous chapters, we have discussed several modes of AFM operation, which
we will now compare. In Table16.1 operating modes are sorted along two coordi-
nates: the operating mode can be static or dynamic and the interaction regime can be
attractive or net repulsive. Often the static AFM is taken to be synonymous with con-
tact AFM (net repulsive interaction), while dynamic AFM is taken to be synonymous
with non-contact AFM (attractive interaction). However, also the off-diagonal ele-
ments in Table16.1 are possible.

The static AFM is usually operated with tip and sample in contact (snap-to-
contact), which corresponds to the upper left entry in the table. However, the static
detection method can also be used in the regime of attractive interaction (non-
contact). For instance, long-range electric or magnetic forces can be measured using
static AFM in the non-contact mode (lower left off-diagonal element in the table).
In this mode possible instabilities can lead to snap-to-contact.

In the dynamic modes, snap-to-contact is avoided and the contact/non-contact
“coordinate” has to be assigned differently. The contact regime can be assigned to
the range where a net repulsive force acts between the tip and sample, while in
non-contact the force between tip and sample is attractive.

In the dynamic modes, we measure changes in the vibrational properties of the
cantilever due to tip-sample interactions. The measured properties include the res-
onance frequency, the oscillation amplitude, and the phase between excitation and
oscillation of the cantilever. The dynamic AFM can either operate in the non-contact
mode (lower right entry in the table) or in the intermittent contact mode (tapping
mode) where a repulsive tip-sample contact is established at the lower turnaround
point of the oscillation (upper right off-diagonal entry in the table). In dynamic
mode, snap-to-contact has to be avoided because no oscillation can be sustained in
the snapped-in state. Therefore, cantilevers used in the dynamic mode have a higher
force constant than cantilevers used in contact mode, or alternatively the amplitudes
used are large.



284 16 Frequency Modulation (FM) Mode in Dynamic Atomic Force Microscopy …

Table 16.1 Operating modes of AFM ordered in two “coordinates”: static/dynamic mode and
attractive/net-repulsive interactions

Static AFM Dynamic AFM

Contact Contact mode: Tapping mode:

Net-repulsive interaction k ∼ 1N/m k ∼ 20–100N/m

Non-contact Non-contact mode: AM/FM non-contact mode:

Attractive interaction k ∼1N/m k ∼ 20–106 N/m

16.5 Summary

• In the FM detection scheme the oscillation frequency follows the shift of the
resonance frequency, i.e. the cantilever always oscillates at resonance.

• The frequency shift in the FM detection is given as

� f = − f0
A2k

〈Fts(t) · z(t)〉 = − f0
πk A2

+A∫

−A

Fts(d + z)
z√

A2 − z2
dz. (16.35)

• In the large amplitude limit (amplitudemuch larger than the range of the tip-sample
force) the normalized frequency shift γ factors the dependence on the experimental
parameters out and is given by

γ = � f
k A3/2

f0
. (16.36)

Thus, the normalized frequency shift depends only on an integral over the tip-
sample force.

• In the self-excitation scheme the cantilever is self-excited from thermal noise at
the momentary resonance frequency of the cantilever. The cantilever oscillation
signal is measured and fed back (after an appropriate phase shift) as the cantilever
driving signal.

• If in FM detection the amplitude is kept at a constant value (amplitude control),
the corresponding multiplication factor contains information about the tip-sample
dissipation.

• In the FM mode the frequency of the cantilever oscillation is usually measured by
a phase-locked loop (PLL). The measured frequency shift signal is used to control
the tip-sample distance via a z-feedback loop.

• In the PLL tracking mode the cantilever driving signal is taken from an oscillator
of the PLL. This has the advantage of driving the cantilever with a very clean
sinusoidal signal.
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• The non-monotonous dependence of the frequency shift on the tip-sample distance
can lead to instabilities. These can be prevented by taking the absolute value of
the measured frequency shift as the signal for the z-feedback.

• The response time to adapt the steady-state oscillation signal after an instantaneous
change of the tip-sample interaction is much shorter in the case of FM detection
than for AM detection. Therefore, the FM detection scheme is used for with high
Q-factors, i.e. in vacuum.

• The AFMmodes can be ordered in two coordinates: static/dynamic and net repul-
sive (contact)/attractive (non-contact). The static AFM in the net repulsive regime
is termed the contact mode and the dynamic mode in the attractive regime is called
the non-contact mode. However, besides these regimes, the static mode can also
be operated in the attractive interaction regime, and the dynamic mode can be
operated in the net repulsive interaction regime (intermittent contact).
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Chapter 17
Noise in Atomic Force Microscopy

In topographic images, the noise in the vertical position of the tip (i.e. the noise in
the tip-sample distance) should be considerably smaller than the topography signal
on the sample to be measured. If atomic steps are imaged, the noise should have
an amplitude much smaller than 1Å. In the following we do not consider noise due
to floor vibrations or sound, but more fundamental limits of noise due to thermal
excitation of the cantilever, or due to the detection limit of the preamplifier detecting
the signal.

In Sect. 11.3 we studied the shot noise due to the discrete arrival of photons at
the photodiode. The minimum detectable cantilever motion and the corresponding
minimum detectable force were estimated. Additionally to this fundamental limit
for the detector noise, noise from the detection electronics has to be considered. The
detector noise depends on the specific detectionmethod used.Another source of noise
is the thermal noise of the cantilever. The cantilever is considered to be a harmonic
oscillator which is thermally excited to a certain noise amplitude

√〈
�z2th

〉
. In this

chapter the effect of the thermal noise amplitude on the experimentally measured
quantities in AFM such as the frequency shift is estimated.

17.1 Thermal Noise Density of a Harmonic Oscillator

The thermal displacement noise of a harmonic oscillator can be estimated from the
equipartition theorem, which states that each degree of freedom carries an average
energy of 1/2 kBT in thermal equilibrium. A degree of freedom is a parameter which
enters into the expression of the total energy as a squared term. For the case of a one-
dimensional harmonic oscillator the energy is written as Etot = 1/2 kz2 + 1/2mv2,
and the number of degrees of freedom is two, as z and v enter as squared terms. Thus,
the equipartition theorem states that the total energy of a thermally excited harmonic
oscillator is kBT .
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Since the total mechanical energy in a harmonic oscillator is stored on average
as one half in kinetic and one half in elastic energy, the average mean square dis-
placement

〈
�z2th

〉
is related to the total energy by 1/2 Etot = 1/2 k

〈
�z2th

〉
. From this

the (time) average of the square of the vibrational amplitude due to thermal noise
results as 〈

�z2th
〉 = kBT

k
. (17.1)

At room temperature and for a spring constant of k = 10N/m, an amplitude of∼0.2Å
results. This is quite a large value and shows that soft cantilevers with high force
sensitivity have quite a large thermally excited vibrational amplitude. On the other
hand, as we discussed above, stiffer cantilevers have less force sensitivity in the static
mode.

In the following, we will derive the thermal noise density of a harmonic oscillator
(cantilever) in contact with a heat bath. The general concept for the power spectral
density of a noise signal was introduced in Sect. 5.5. The noise signal is now the
deflection of the cantilever �z and the corresponding power noise spectral density
is termed N 2

z,th,osc( f ). This thermal noise density consists of two contributions. First
the excitation noise (thermal noise), which is assumed to be frequency-independent
white noise Nz,th,exc. The value of this thermal excitation noise density still has to
be determined in the following. A second contribution to N 2

z,th,osc( f ) comes from
the harmonic oscillator. The constant thermal excitation noise density is sent through
the harmonic oscillator with its resonance characteristics. Thus, the resulting thermal
noise density of the harmonic oscillator Nz,th,osc( f ) can be written as (neglecting the
subscript z)

Nth,osc( f ) = Nth,excG( f ), (17.2)

with G( f ) being the transfer function of the harmonic oscillator. In this chapter we
use the natural frequency f = ω/(2π), since in actual measurements the natural
frequency is used. As already discussed in Chap. 2 in (2.32), the transfer function of
the harmonic oscillator is

A2

A2
drive

≡ G2( f ) = 1(
1 − f 2

f 20

)2 + 1
Q2

f 2

f 20

. (17.3)

Themean square thermal displacement canbe calculated according to (5.13).Another
expression for the mean square displacement was obtained from the equipartition
theorem as (17.1). Thus, the following equation results

〈
�z2th

〉 =
∫ ∞

0
N 2
th,osc( f )d f = N 2

th,exc

∫ ∞

0
G2( f )d f = kBT

k
. (17.4)

Fortunately, an anti-derivative for the integral overG2( f ) exists (which can be found
using a computer algebra system or a table of integrals). We omit this here, however.
A very simple expression results (

∫ ∞
0 G2( f )d f = πQ f0/2), when the integration
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Fig. 17.1 a Transfer function of the harmonic oscillator G( f ). b Corresponding displacement
spectral noise density Nth,osc at room temperature. The multiplication factor Nth,exc for going from
a to b depends on the Q-factor

limits are inserted. With this, the spectral noise density of a harmonic oscillator
results as

Nth,osc( f ) = Nth,excG( f ) =
√

2kBT

πkQ f0
G( f ). (17.5)

Thus, the spectral noise density of the harmonic oscillator consists of the strongly
peaked transfer function of the harmonic oscillator G( f ) and a frequency indepen-
dent white thermal excitation noise density given by (17.5) as

Nth,exc =
√

2kBT

πkQ f0
. (17.6)

Since the white noise Nth,exc depends on the Q-factor, different multiplication factors
have to be used when going from the transfer function to the displacement spectral
noise density shown in Fig. 17.1b. Due to this, for high Q-factors the thermal noise
of the oscillator is concentrated closer to the resonance frequency and suppressed
everywhere else.

The mean square displacement is obtained by integration over the relevant fre-
quency range. The mean square displacement noise within a bandwidth from f1 to
f2 according to (5.14) as

〈
�z2th( f1, f2)

〉 =
∫ f2

f1

N 2
th,osc( f )d f = 2kBT

πkQ f0

∫ f2

f1

G2( f )d f. (17.7)

This equation will be used in the following in order to evaluate the mean square
displacement in various circumstances.
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17.2 Thermal Noise in the Static AFM Mode

In the static case, the relevant frequencies are far below the resonance frequency and
the transfer function can be approximated as G2 = 1. Inserting this into (17.7), the
mean square displacement in the static mode results with B = f2 − f1 as

〈
�z2th,stat

〉 = 2kBT B

πkQ f0
. (17.8)

The thermal noise amplitude of the sensor (cantilever tip) translates to the finally
measured quantities, such as theminimumdetectable force in staticAFM. In the static
AFMmode, the noise amplitude corresponds to a noise in the force measurement by

Hooke’s law via �F = k
√〈

�z2th,stat
〉
. Therefore, the minimum detectable force (due

to thermal noise) in static AFM (i.e. at low frequencies off-resonance) is

F static
min,th =

√
2kkBT B

πQ f0
. (17.9)

17.3 Thermal Noise in the Dynamic AFM
Mode with AM Detection

Here we consider the AM dynamic mode in which the cantilever (or more generally
AFM sensor) is oscillated at, or very close to, the resonance frequency of the can-
tilever. Therefore, we consider f = f0 and the transfer function results in G2 = Q2.
Inserting this into (17.7), the mean square displacement in the dynamic mode results
as 〈

�z2th,res
〉 = 2kBT Q(2B)

πk f0
, (17.10)

with 2B being the two sided bandwidth, i.e. from f0 − B to f0 + B. The thermal
displacement noise (17.10) is Q times higher in the dynamic case than in the static
case (17.8). However, since also the signal (cantilever oscillation amplitude) is Q
times larger in the dynamic mode due to the resonance enhancement, the signal-to-
noise ratio of the cantilever deflection remains the same as in the static mode.

In the following, we derive the minimum detectable force gradient in the AM
slope detection mode. The operating point in this mode is close to the maximum
slope (roughly at half of the maximum amplitude) as discussed in Sect. 13.3. For
simplicity, we assume that the measurement bandwidth is so narrow that the transfer
function can be considered as constant with the value 1/2 Q (instead of Q at the

resonance). Thus, the thermal displacement noise
√〈

�z2th
〉
is one half of that derived

from (17.10).
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As we have shown before in (13.11), in dynamic AFM for small amplitudes, the
force gradient is related to the measured frequency shift by ∂Fts/∂z = � f 2k/ f0 (we
omit the factor−1 here). In the slope detectionmode, themeasured amplitude change
is proportional to a frequency change with the inverse of the slope of the resonance
curve at the working point as proportionality factor as

∂Fts

∂z
= 2k

f0
� f = 2k

f0

� f

�A
�A. (17.11)

The inverse slope of the resonance curve at theworking point can bewritten according
to (2.40) as � f/�A ≈ f0/(QA). If we identify the amplitude change �A with the

thermal noise
√〈

�z2th,res
〉
, the minimum detectable force gradient can be written as

∂F

∂z
= 2k

f0

f0
QA

�A = 2k

QA

√
kBT Q(2B)

πk f0
=

√
4kkBT (2B)

πQ f0A2
. (17.12)

In order to decrease the noise large Q-factors are desirable. However, this limits the
detection bandwidth due to a large time constant, as shown in Sect. 13.5. Also small
k/ f0 ratios are desirable as long as no snap-to-contact occurs.

In tapping mode atomic force microscopy, a certain amplitude (attenuation) A
corresponds to a certain tip-sample distance z′ (i.e. distance between surface and the
lower turnaround point of the oscillating tip). A noise in the deflection signal due to

thermal excitation �A =
√〈

�z2th
〉
translates to a noise in the topography signal z′

via the slope of the amplitude distance relation dA/dz′ as

�z′ = �A
dz′

dA
=

√〈
�z2th

〉

dA/dz′ . (17.13)

Here the mean square displacement has to be taken from (17.10). For stiff materials
the slope dA/dz′ is about one, while it has a smaller value for soft materials and the
noise in the topography signal becomes correspondingly larger.

17.4 Thermal Noise in Dynamic AFM with FM Detection

In FM modulation, a signal (or noise) component at frequency fmod leads in the FM
signal to two side bands at f0 ± fmod above and below the carrier frequency1 f0, as
shown in AppendixD. In the followingwe consider the deflection noise at f0 + fmod.
In order to evaluate the mean square displacement noise according to (17.7), we
have to evaluate the transfer function at f0 + fmod. When evaluating G( f0 + fmod)

1We do not indicate explicitly that the carrier frequency is the shifted resonance frequency f ′
0.
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we have to consider typical values of f0 ranging from 30 kHz to 1MHz, and fmod

lies typically in the range (far) below 1 kHz, i.e. fmod � f0. In order to evaluate
G( f0 + fmod) in the limit very close to the resonance frequency, we start from (17.3)
and use (2.37), resulting in

G2( f0 + fmod) = 1(
1 − ( f0+ fmod)

2

f 20

)2 + 1
Q2

( f0+ fmod)
2

f 20

≈ 1

4 f 2mod

f 20
+ 1

Q2

. (17.14)

If the condition fmod > f0/(2Q) is fulfilled, (which has to be checked) the term
1/Q2 in the denominator of (17.14) can be neglected. In this case, the square of the
thermal displacement noise density can, according to (17.6), be written as

N 2
th,osc( f0 + fmod) ≡ N 2

z,th( f0 + fmod) = N 2
th,excG

2( f0 + fmod) = kBT f0
2πkQ f 2mod

.

(17.15)

We change the notation here in order to distinguish between the thermal displace-
ment noise density to Nz,th( f0 + fmod), and the thermal frequency noise density after
demodulation N f,th( fmod). In FM modulation, the displacement noise is transferred
to a frequency noise according to (D.11) as shown in AppendixD and we can write

N f,th( fmod) =
√
2 fmod

A
Nz,th( f0 + fmod). (17.16)

For the thermal displacement noise according to (17.15), the frequency noise density
results for the case fmod > f0/(2Q) as

N f,th =
√

kBT f0
πkQA2

= const., (17.17)

which does not depend on fmod.
The thermal frequency noise in FM detection can be calculated analogously to

(5.14) by integration over fmod up to the maximum fmod,max = B as

〈
� f 2th

〉 =
∫ B

0
N 2

f,th( fmod)d fmod = kBT f0
πkQA2

B. (17.18)

The noise contributions from frequencies lower than f0 are already included by the
factor

√
2 in (17.16). Thus, in the FM case B is defined as B = fmod,max, i.e. as a

single sided bandwidth.
The minimum detectable force gradient due to thermal noise can be written as

∂F

∂z
= 2k

f0

√〈
� f 2th

〉 =
√
4kkBT B

πQ f0A2
. (17.19)
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17.5 Sensor Displacement Noise in the FM Detection Mode

Up to now we have considered the thermal noise of the cantilever which gives the
fundamental limit of noise. Nowwe consider the sensor displacement noise, which in
practical implementations of atomic force microscopy is often the dominant source
of noise. Sensor displacement noise may be the shot noise of the photons arriving
on the photodiode in the case of the laser beam deflection mode of detection. In an
electrical detection scheme of the sensor displacement, the electrical noise of the
preamplifier is the dominant source of detector noise. For any detection scheme,
the actually measured noise of the detection voltage can be converted via a sensi-
tivity factor into an equivalent displacement noise Nz,sens( f ), which is expressed in
units of m/

√
Hz. For simplicity, we assume a white sensor displacement noise, i.e.

Nz,sens( f0 + fmod) = Nz,sens is constant as a function of frequency within the con-
sidered detection bandwidth around f0. Thus, the mean square displacement due to
the sensor displacement noise results according to (5.14) as

〈
�z2sens

〉 =
∫ B

0
N 2
z,sensd f = N 2

z,sensB. (17.20)

Further, the minimum detectable force in the static mode results as

F static
min,sens = k

√〈
�z2sens

〉 = kNz,sens

√
B. (17.21)

In the dynamic mode the minimum detectable force gradient due to the sensor dis-
placement noise results according to (17.12) as

∂F

∂z
= 2k

QA

√〈
�z2sens

〉 =
√
2k

QA
Nz,sens

√
2B, (17.22)

with 2B being the two-sided bandwidth. The frequency noise density of the demod-
ulated� f signal in FM detection results from the sensor displacement noise and can
be written according to (D.11) as

N f,sens( fmod) =
√
2 fmod

A
Nz,sens. (17.23)

The mean square frequency noise resulting from the sensor displacement noise is

〈
� f 2sens

〉 =
∫ B

0
N 2

f,sens( fmod)d fmod = 2N 2
z,sens

A2

∫ B

0
f 2modd fmod. (17.24)
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Thus, the frequency noise due to the sensor displacement noise results as

√〈
� f 2sens

〉 =
√
2N 2

z,sens

3A2
B3. (17.25)

In contrast to the thermal noise which did not depend on the frequency, the frequency
noise due to the sensor increases with increasing bandwidth proportional to B3/2.

The minimum detectable force gradient in FM detection due to the sensor noise
results, using (17.12), as

∂F

∂z
= 2k

f0

√〈
� f 2sens

〉 =
√
8

3

kNz,sensB3/2

f0A
. (17.26)

17.6 Total Noise in the FM Detection Mode

As sources of noise in the FM detection mode we have considered the thermal
noise (17.17) and the sensor displacement noise (17.23). Considering additionally
also another source of noise, the oscillator noise N 2

f,oscillator [1], in the general case
(independent of the limit fmod > f0/(2Q) used to derive (17.17)) the following
expression for the combined noise density N 2

f,total is obtained [1]

N 2
f,total = kBT f0

πkQA2
+ N 2

z,sens f
2
0

2Q2A2
+ 2N 2

z,sens

A2
f 2mod. (17.27)

The corresponding frequency noise is obtained by integrating the frequency noise
density (17.27) up to the bandwidth B, as

� f 2f,total = kBT f0
πkQA2

B + N 2
z,sens f

2
0

2Q2A2
B + 2N 2

z,sens

3A2
B3. (17.28)

Inmost cases (except for very low Q-factors, as in liquids) the second terms in (17.27)
and (17.28) are negligible compared to the other terms and can be neglected. If both
of the other terms in (17.27) and (17.28) have non negligible contributions, two of
the three involved parameters can be determined: the amplitude A which is related
to the sensitivity factor Ssensor, the sensor displacement noise Nz,sens, or the spring
constant k. Usually, the sensitivity factor Ssensor and the sensor displacement noise
Nz,sens are determined by fitting (17.27) to the experimentally measured frequency
noise density.

An example of an actually measured frequency noise density as a function of
the modulation frequency is shown in Fig. 17.2. The experimentally measured noise
density is characterized by a small constant offset due to thermal noise (17.17) and
a linear increase of the noise density with the modulation frequency according to
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Fig. 17.2 Experimentally
measured frequency noise
density Nf,total( fmod) of an
FM atomic force microscopy
setup
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Table 17.1 Intrinsic parameters for different sensors used in atomic force microscopy

Sensor parameter Si cantilever qPlus tuning fork Needle sensor

Quality factor 300 3,000 15,000

Resonance frequency (Hz) 100k 32k 1M

Spring constant (N/m) 10 1,800 1.08M

Oscillation amplitude (nm) 4 0.1 0.1

Nz,sens (fm/
√
Hz) 100 50 2

(17.23). Due to the bandwidth of the frequency demodulator electronics, which has
(in this example) a bandwidth limit of 1kHz, the measured noise density levels off
and decreases beyond this frequency.

In Table17.1, characteristic intrinsic parameters for different sensors used in
atomic force microscopy are listed for three different kinds of sensors. A typical
silicon cantilever sensor is compared to a quartz tuning fork (qPlus sensor) and to
a length extensional sensor (needle sensor). The detection noise densities are taken
from [2]. In Table17.2 numerical values for the noise estimated in this chapter are
compared for the three different kinds of sensors.

17.7 Measurement of System Parameters in Dynamic AFM

Parameters of the AFM sensor and the measurement setup which are a priory
unknown are: the spring constant of the cantilever k, the amplitude A which is
determined by the sensitivity factor Ssensor, the sensor displacement noise Nz,sens, as
well as the quality factor Q and the resonance frequency f0 of the AFM sensor used.

Methods for the determination of these parameters are considered in different
sections of this book. Here we summarize these methods and consider under which
circumstances the differentmethods can be used. The use of themethods to determine
these parameters depends on (a) the type ofAFMsensor (cantilever, or quartz sensor),
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Table 17.2 Noise figures for different AFM sensors for a bandwidth of 1,000Hz and T = 300K

Mode Noise figure Si cantilever qPlus tuning
fork

Needle sensor Equation
number

Static
√〈

�z2
〉
(fm) 94 3.9 0.013 (17.8)

Fmin,th (pN) 0.94 6.9 14 (17.9)

Fmin,sens (pN) 32 2,800 68,000 (17.21)

AM
√〈

�z2th
〉
(pm) 40 17 0.27 (17.10)

(∂F/∂z)th (N/m) 0.0005 0.1 0.3 (17.12)√〈
�z2sens

〉
(pm) 3.2 1.6 0.063 (17.20)

(∂F/∂z)sens (N/m) 0.0001 0.019 0.091 (17.22)

FM (∂F/∂z)th (N/m) 0.0003 0.5 0.2 (17.19)√〈
� f 2th

〉
(Hz) 1.7 0.9 0.09 (17.18)

√〈
� f 2sens

〉
(Hz) 0.6 13 0.52 (17.25)

(∂F/∂z)sens (N/m) 0.0001 1.5 1.1 (17.26)

(b) the quality factor of the sensor, or (c) if tip-sample contact is required or if the
parameter can be determined already without tip-sample contact. The easiest is the
determination of Q and f0. Experimentally a resonance curve sweep is measured
by, exciting the AFM sensor with a certain driving amplitude and sweeping the
driving frequency in a range close to the resonance frequency of the cantilever, while
measuring the resulting cantilever amplitude (and optionally also the phase). The
experimentally measured resonance curve of a sensor is then fitted to the resonance
curve of a harmonic oscillator in order to determine the resonance frequency and the
quality factor. This relies on the assumption that the response of the AFM sensor can
be approximated by a driven damped harmonic oscillator, which is usually fulfilled.

The spring constant k of cantilever type sensors can be determined using the
geometrical data of the cantilever, or using the Sadermethod, as outlined in Sect. 11.6.
For quartz sensors (tuning fork or needle sensors), the spring constant is usually
calculated from the geometrical data, as the Sader method is not applicable for these
sensors.

The amplitude sensitivity factor Ssensor converts the actually measured sensor
output voltage�Vsensor at the output of the sensor preamplifier to the deflection�z, as
�z = Ssensor�Vsensor. As shown in detail in Sect. 11.6 this amplitude sensitivity factor
can be determined by pressing the cantilever tip to a hard sample while measuring
the sensor voltage. One disadvantage of this method is that it can potentially lead to
a modification (blunting) of the tip. This method can only be applied to cantilever
type sensors, as the quartz sensors have a too high spring constant (k > 2000N/m),
which would lead to a damage of the sensor tip during this procedure. For quartz
sensors the sensitivity can be calculated from the charge induced on the electrodes
of these sensors, as outlined in [2]. The experimental determination of the amplitude
sensitivity for quartz sensors is outlined in Sect. 18 and in [3].
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The thermalmethodoutlined in detail in Sect. 11.6 canbe applied to cantilever type
sensors aswell as to quartz sensors considering their fundamentalmode as a harmonic
oscillator. In this method the spring constant and the mean thermal displacement
are related to the thermal energy by k

〈
�z2th

〉 = kBT . Due to this, either the spring
constant k or the amplitude sensitivity factor can be determined if the respective
other is known. The advantage of the thermal method is that it can be applied non-
destructively, i.e. without tip-sample contact. If sensors with very high quality factors
(>105) are used, and small vibrations other than thermal vibrations (e.g. due to floor
vibrations or sound) are amplified Q times, these vibrations become stronger than
the thermal vibration amplitude. In this case the thermal peak is no more a thermal
peak and the thermal method cannot be applied [4].

The sensor displacement noise Nz,sens can also be determined using the thermal
method. When the noise floor of the spectral deflection noise density (the quantity
acquired by the thermal method) is measured somewhat off the resonance, i.e. not
influenced by the resonance, it corresponds to the sensor displacement noise Nz,sens.

If the FM detection mode is used, the experimentally measured frequency noise
density of the � f signal after FM demodulation, can be used in order to determine
one or two of the following parameters: the sensitivity factor SSensor, the sensor
displacement noise Nz,sens, or the spring constant k, as outlined in Sect. 17.6 and [5].

17.8 Comparison to Noise in STM

In the following, we derive the fundamental thermal noise present in STM in order to
compare it to the previously considered noise in atomic force microscopy. In (5.28)
we have seen that the fundamental limit for the detection of a (tunneling) current
using a transimpedance amplifier is the Johnson noise in the feedback resistor, which
was written as

�I = √
4kBT B/R. (17.29)

For a 100M� resistor and a bandwidth of 3kHz, a (RMS) noise current of �I =
0.3pA results. This fundamental noise limit for the measurement of the tunneling
current transfers to a noise in the tip-sample distance (i.e. the vertical distance) via
the dependence of the tunneling current on the tip-sample distance I (z) ∝ e−2κz . The
slope of the I (z) curve at the working point I0(z0) converts the noise in the current
into a z-noise via

�z = �I

|dI/dz| . (17.30)

Assuming a tunneling current of I0 = 0.1nA at the working point and κ = 0.1Å−1,
the slope of the I (z) curve results as dI/dz = −2κ I0. This leads to a vertical noise
of 0.15pm, which is much smaller than the resolution required even in order to
resolve an atomic corrugation. Moreover, according to (17.29) the vertical noise
scales with the square root of the bandwidth �z ∝ �I ∝ √

B. This weaker increase



298 17 Noise in Atomic Force Microscopy

of the noise with the measurement bandwidth than the B3/2 dependence found for
the FM detection in atomic force microscopy allows to work with a larger bandwidth
in STM compared to FM detection in AFM.

17.9 Signal-to-Noise Ratio in Atomic Force
Microscopy FM Detection

Up to now we have considered the noise in AFM under different circumstances,
however, the actual figure of merit is the signal-to-noise ratio. In the following we
will discuss the signal-to-noise ratio for the case of the FMdetectionmethod inAFM.
In this case, the signal-to-noise ratio is the frequency shift due to the tip-sample force
gradient � f divided by the corresponding noise. Specifically we will analyze this
signal-to-noise ratio as a function of the oscillation amplitude and find the cantilever
oscillation amplitude at which the signal-to-noise ratio is largest [6]. In order to
perform this analysiswe have to use a certainmodel for the tip-sample interaction.We
assume a repulsive force, which is described by an exponential distance dependence
with a range λ as

F(u) = F0e
−u/λ. (17.31)

Now we evaluate the signal, i.e. the frequency shift in FM detection for the two
limiting cases that the cantilever oscillation amplitude is either much larger than the
interaction length λ, or much smaller. The following equations were derived under
the condition that the minimum tip-sample distance at the lower turnaround point
of the oscillation is kept constant when the amplitude is varied. In the limit that the
oscillation amplitude is large compared to the interaction range, the frequency shift
can (according to (16.19) and (16.24) be expressed as

� f

f0
= 1√

2π

F0

√
λ

k A3/2
. (17.32)

This means that for large amplitudes the frequency shift signal depends on the ampli-
tude proportional to A−3/2, as shown in Fig. 17.3.

In the opposite limit that the oscillation amplitude is much smaller than the inter-
action range, the frequency shift has been found proportional to the effective spring
constant of the tip-sample interaction (13.11). This can be evaluated further using
the force law in (17.31) as

� f

f0
= kts

2k
= −F ′

2k
= F

2kλ
. (17.33)

Thismeans there is no dependence of the frequency shift on the oscillation amplitude,
which corresponds to the horizontal line for the frequency shift signal in Fig. 17.3
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Fig. 17.3 The frequency
shift signal, the
corresponding noise and the
signal-to-noise ratio in FM
detection are shown as a
function of the cantilever
(sensor) oscillation
amplitude A, which is
normalized to the tip-sample
interaction length λ.
(Adapted from [6])
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for small amplitudes. If the amplitude is close to the interaction length, there is a
smooth transition between the limiting cases for small and large amplitudes as shown
in Fig. 17.3.

As to the noise, we have seen in the previous section that both thermal noise
and detector noise scale as 1/A with the amplitude given in (17.18) and (17.25). In
Fig. 17.3 also the resulting signal-to-noise ratio is plotted. For amplitudes smaller than
λ the signal is constant, while the noise decreases as 1/A. Thus, the signal-to-noise
ratio increases proportional to A for small amplitudes. For large amplitudes the
amplitude dependences of signal and noise combine to S/N ∼ A−3/2A ∼ 1/

√
A,

which leads to a decrease of the signal-to-noise ratio for larger amplitudes. A maxi-
mum in the signal-to-noise ratio arises if the amplitude corresponds to the range of
the interaction λ. These considerations show that the use of oscillation amplitudes in
the order of the interaction length lead to the highest signal-to-noise ratio. Thus, if
the aim is to use short-range interactions for high-resolution imaging, the oscillation
amplitude should be small, possibly less than an ångström.

It is also interesting to compare the frequency shift signal of a short-range inter-
action to the signal of an interaction with a longer range for small and large values
of the oscillation amplitude. In the following, we assume a short-range interaction
with λshort = 0.1nm and an interaction with a range of λlong = 5nm. If we consider
the limiting case A > λlong, using (17.32) we find that the signal of the long-range
interaction is seven times larger than the signal of the short-range force (ratio of the
square roots of the interaction length). However, in the limit of small amplitudes
A < λshort the signal of the short-range interaction is, according to (17.33), 50 times
larger than that of the long-range interaction, with the other parameters kept the same.
This means for a large oscillation amplitude that the signal from a long-range force
dominates, while for a small oscillation amplitude the signal comes predominantly
from the short-range interactions.
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17.10 Summary

• The fundamental limit for the deflection noise of a cantilever arises due to its
thermal excitation. The thermal noise depends on the white noise excitation and
on the transfer function of the cantilever, which peaks at the resonance frequency.
At usual measurement conditions the thermal noise is not the limiting source of
noise.

• Another independent contribution to the noise of the cantilever is the electrical
noise of the sensor which measures the cantilever deflection.

• In FM detection, the sensor noise depends on the measurement bandwidth ∝
B3/2. This quite strong increase of the sensor noise with the bandwidth limits the
measurement bandwidth in FM detection.

• The signal-to-noise ratio in FM detection is largest for amplitudes corresponding
to the range of the interaction force.
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Chapter 18
Quartz Sensors in Atomic Force
Microscopy

As an alternative to themost frequently used silicon cantilevers, quartz oscillators can
be used as sensors in AFM. It is possible to obtain atomic resolution in FM atomic
force microscopy using quartz sensors. These quartz sensors are characterized by
a large spring constant (>1,000N/m). Both quartz tuning forks, which are used in
wristwatches, as well as quartz needle oscillators can be used as sensors in AFM.
An advantage of using quartz sensors is that the detection of the oscillation signal
can be performed completely electrically, without any optical elements, like a laser
diode, a lens, a fiber, or a photodiode being needed. This simplifies the experimental
setup.

18.1 Tuning Fork Quartz Sensor

One example of a quartz sensor is the quartz tuning fork, frequently used in wrist-
watches. In Fig. 18.1 a tuning fork quartz oscillator is shown without housing. The
whole tuning fork has a length of 4mm, and the prongs have a length of 2.4mm. The
resonance frequency of such a tuning fork is usually 32,768Hz, which is related to
its use in watches. The bending mode of such a tuning fork is like that known from
a macroscopic tuning fork with the two prongs with a 180◦ phase difference (e.g.
against each other). Since the tuning fork has no sharp tip at its end a (tungsten) tip is
usually attached at the end of the prong. If a tip is fixed to one prong only, an asym-
metry between the two prongs is induced which reduces the Q-factor substantially.
In order to prevent this, the other prong can be fixed to a holder with high mass. This
configuration is called qPlus configuration [1].

The excitation of the tuning fork is usually achieved mechanically by applying
an AC voltage to a piezoelectric actuator exciting the sensor. The tuning fork is
excited at its lowest resonance frequency, which leads to a bending of the sensor
prong. Since single crystal quartz is a piezoelectric material, the detection of the
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Fig. 18.1 A tuning fork
quartz oscillator as used in
wristwatches. The tuning
fork oscillator can be used as
a force sensor in AFM

bending oscillation of the prong of the tuning fork is performed electrically using
the piezoelectric effect. A bending of the prong induces a voltage between the metal
electrodes at the prong. Simultaneous STM operation can be achieved by attaching
a wire to the tip, which guides the tunneling current to a preamplifier.

18.2 Quartz Needle Sensor

Another type of quartz crystal oscillator which can also be used as a force sensor in
atomic force microscopy is shown in Fig. 18.2. This sensor is known as a “needle
sensor” and is characterized by its small size (needle length 1.3mm), an extensional
oscillation of the quartz needle, a high resonance frequency (∼1MHz) and a high
force constant (∼1MN/m). The needle has two Au electrodes as shown in Fig. 18.2,
which allows for an electrical excitation without any additional driving piezo by
applying the AC driving voltage to one of the two electrodes. This induces an oscil-
lation of the needle along its axis via the (inverse) piezoelectric effect. An electrical
detection also can be obtained due to the piezoelectric effect. The oscillating nee-
dle induces a voltage on the second electrode by the piezoelectric effect, which is
amplified by a preamplifier and processed further using the FM detection scheme, as
described previously. A sharp tip has to be attached to the top of the quartz needle.
This can be a thin tungsten tip, as shown in Fig. 18.3a. Another way of attaching a
tip to the needle sensor is to glue a Si cantilever to the top of the needle and to break
the cantilever base off, as shown in Fig. 18.3b. If the attached tip plus glue mass is
small, high Q-factors >10,000 can be achieved even in air.

A schematic of the control electronics of the needle sensor in which the needle
sensor can be operated in the force detection mode (AFM) mode, or alternatively
in the tunneling mode (STM) is shown in Fig. 18.4. In the tunneling mode (TCF =
tunneling current feedback), in which the needle sensor can still oscillate, a DC
tunneling bias voltage Vbias is added to the AC signal driving the needle oscillation.
The tip is electrically connected to the needle electrode to which the DC bias is
applied. The resulting tunneling current (averaged over one oscillation cycle) is
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Fig. 18.2 Photo of a needle sensor (a) and schematic cross section through the needle (b). The
needle sensor is an extensional type quartz oscillator which can be used as force sensor in AFM

Tungsten tip

Quartz needle
Conducting glue

Silicon  cantilever

Conducting glue

Quartz needle

(a) (b)

Fig. 18.3 Tips glued to the top of a needle sensor. a Electrochemically etched tungsten tip. b End
part of a silicon cantilever

measured at the sample and used as a feedback signal for control of the tip-sample
distance. This mode of operation is called tunneling current feedback mode (TCF).
The frequency shift of the oscillating needle sensor can be recorded in parallel (as a
free signal), however, it is not used for feedback.
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Fig. 18.4 Schematic circuit for driving the needle sensor as a force sensor in AFM. Alternatively
the frequency shift signal (FSF) or the tunneling current (TCF) can be used as feedback signals [2]

Table 18.1 Comparison of the properties of the different AFM force sensors: silicon cantilever,
quartz tuning fork and quartz needle sensor

Cantilever Tuning fork Needle sensor

Spring constant (N/m) 1–50 1–20k 600k–1M

Resonant frequency f0 (kHz) 100–300 20–100 600–2,000

Quality factor Q 100–2k 1–20k 5–200k

Frequency shifta � f (Hz) 50 75 5

Min. amplitudeb Amin (Å) 4 0.05 0.0002
aFor a force gradient of 10nN/nm the frequency shift is � f = − f0

2k 10nN/nm
bThe minimum amplitude before snap to contact for a force of 10nN is given by the condition
10nN < k Amin

If the needle sensor is employed in the AFMmode with the FM detection scheme,
the frequency shift signal is used for the z-feedback (FSF= frequency shift feedback).
Additionally, the tunneling current can be recorded simultaneously as a free signal.
In this way it is possible to combine atomic force microscopy and scanning tunneling
microscopy.

In Table18.1 typical properties of three types of AFM force sensors are compared:
silicon cantilever, tuning fork and needle sensor [3]. The spring constant increases
strongly from cantilever to tuning fork and the needle sensor. This is due to the larger
dimensions of the tuning fork compared to the micro machined cantilevers. The high
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stiffness of the needle sensor is induced by its extensional vibration geometry (the
axial extension of a bar is a hard spring). Also the quality factor (in air) increases
in the order from cantilever via tuning fork to the needle sensor. For the cantilever
sensors, the quality factor is low due to damping in air. The frequency shift for a
force gradient of 10nN/nm, as an example, is smallest for the needle sensor. Due to
the higher force constant, the tuning fork and the needle sensor can be operated at
close tip sample distances without the problem of snap-to-contact occurring.

18.3 Determination of the Sensitivity of Quartz Sensors

Themechanical oscillation amplitude Asensor is related to themeasured sensor voltage
Vsensor (measured at the output of the preamplifier measuring the sensor signal) by
the sensitivity factor as

Asensor = SsensorVsensor. (18.1)

In the calibration procedure, the sensitivity factor (Ssensor in nmper volt) is determined
which converts Vsensor to an oscillation amplitude Asensor in nm. The voltage Vsensor

and thus also Ssensor depend on the specific devices used to measure the amplitude
voltage, e.g. the gain factors of the amplifiers enter into these quantities.

For silicon cantilevers the cantilever sensitivity was determined for instance via
the force-distance curve, as described in Sect. 11.6. For the case of quartz sensors,
this method cannot be applied due to the very high force constants of these sensors,
which is in the same order as that of hard samples (the tip would be destroyed).

We assume that FM detection is used and the frequency shift is measured. In
Fig. 18.5 we compare two cases of different oscillation amplitudes Asensor and A′

sensor.
When the tip is brought close to the surface and a certain frequency shift setpoint
� f is set, this will result in different values for the average tip-sample position of
the cantilever d, for different oscillation amplitudes Asensor and A′

sensor, as shown in

d sensor

Asensor

Asensor

SampleSample

´d
d

´

Fig. 18.5 Principle of the determination of the oscillation amplitude used for quartz sensors. The
distance between the lower turnaround point of the tip oscillation and the sample is approximately
the same for different oscillation amplitudes. Thus, the change of the sensor amplitude �Asensor
is equal to the retraction of the equilibrium position of the tip �d. A cantilever sensor is shown
schematically instead of a quartz sensor
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Fig. 18.6 Normalized
frequency shift as a function
of the average tip-sample
position d , for different
cantilever oscillation
amplitudes. The sensor
amplitude Vsensor increases
from curve 1 to curve 6 from
0.2 to 0.7V, respectively.
Each increase of the
amplitude by 0.1V leads to a
shift of the curves by
�d = 0.5nm, showing the
proportionality
�d ∝ �Vsensor
(Reproduced with
permission from [4])

d (nm)

d

Fig. 18.5. Since the main contribution to the frequency shift signal comes from the
lower turnaround point of the oscillation (as shown in Chap. 16), the distance from
the lower turnaround point to the sample is approximately the same in both cases,
independent of the oscillation amplitude. Due to this the tip retraction �d is equal to
the amplitude change �d = �Asensor = A′

sensor − Asensor. By measuring �d for the
sensor voltage difference �Vsensor the sensitivity can be determined as

Ssensor = �Asensor

�Vsensor
= �d

�Vsensor
. (18.2)

In this calibration procedure for the sensitivity the tip-sample interaction is kept
constant (e.g. by keeping the frequency shift at a constant value), while Asensor is
varied. In a practical implementation of this method the normalized frequency shift
(introduced in (16.20) is measured as a function of the tip-sample distance d [4].
The measured frequency shift curves have the usual (Lennard-Jones-type) shape, as
shown in Fig. 18.6. With increasing oscillation amplitudes, curves 1–6 are measured.
Since the normalized frequency shift is plotted, all curves have approximately the
same magnitude (as already shown in Fig. 16.3). However, they have a mutual shift:
the larger the oscillation amplitude, the more the curves shift to larger tip-sample
distances d, as also shown in principle in Fig. 18.5. The mutual shift (for a voltage
increase �Vsensor of 0.1V) amounts to about �d = 0.5nm as indicated in Fig. 18.6.
A proportionality between these quantities is observed as �d ∝ �Vsensor, with a
proportionality factor of 0.5nm/0.1V. Thus, the sensitivity factor Ssensor = 5nm/V
can be obtained from the relation

�Asensor = �d = Ssensor�Vsensor. (18.3)
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18.4 Summary

• Quartz sensors are used inAFMsince they allow for completely electrical detection
(and sometimes also excitation) via the piezoelectric effect, which simplifies the
experimental setup.

• The two types of quartz sensors used most frequently are the tuning fork sensor
and the needle sensor.

• A sharp tip has to be attached to the quartz oscillators for the use in AFM.
• The sensitivity of a quartz sensor can be determined experimentally by comparing
the frequency shift versus distance curves for different oscillation amplitudes.
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Appendix A
Horizontal Piezo Constant for a Tube
Piezo Element

Here we will derive a more exact expression for the length extension �L of a bent
piezo tube than the one used in (3.12). Using this expression for �L results in the
equation for the horizontal piezo constant given in (3.13).

Before we come to the bending of a tube piezo element, we introduce the relevant
concept for a very simple case. Let us assume the ceramic of the piezo tube is an
elastic medium and we pull with a force (or force per area σ) at the end of the
piezo tube as shown in Fig.A.1a. As a response to this externally applied stress, a
strain �L develops which leads to a stress τ = E�L/L in the opposite direction. In
equilibrium σ and τ have the same value and opposite direction. Instead of pulling at
the piezo tube,we can exert an elastic stress on the piezo tube also via the piezoelectric
effect. The extension of the piezo element is (according to Hooke’s law and (3.3))
accomplished by a stress σ = Ed31V/h (with h being the wall thickness), which is
counterbalanced by the stress build-up in the elastic medium τ = E�L/L . Here due
to the simple geometry the stresses have the same value throughout the cross section
of the tube and counterbalance locally. This is different for the case of the bending
of a segmented piezo tube. At this point, the stress σ resulting in an extension by the
piezoelectric effect does not occur homogeneously, but only at the segments to which
a voltage is applied. The elastic stress τ is also inhomogeneous, since the elastic strain
which develops due to the bending of a piezo tube is also inhomogeneous throughout
the tube cross section. In the following, we will discuss the geometry of bending,
the stresses σ and τ , and the equilibrium condition in detail following the arguments
given in [1].

We consider a piezo tube with voltages +Vx and −Vx applied to the x-electrodes,
while the voltage at the other electrodes of the tube is zero. The geometry of bending
of a tube piezo is shown in Fig.A.1b. As shown in (3.7), the bending angle can be
written as α = 2�L/Dm , with Dm being the average diameter of the piezo tube (the
wall thickness is considered as negligibly small), and �L being the length extension
at the middle of the x-electrodes. In the following we will determine this length
extension �L .
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Fig. A.1 a When pulled with an external stress σ at an elastic object (piezo tube) the object extends
by �L and an inner stress τ builds up as a response. In equilibrium the two stresses compensate
each other. b In the case of a bending of the tube due to voltages on the x-electrodes, the externally
applied stress σ is only different from zero at those electrodes (blue arrows), while the reaction
stress in the elastic body τ is linear as a function of x . Thus, the stresses do not compensate locally
as in a. However, in equilibrium the total torque has to vanish. c Cross section of the piezo tube
with the applied voltages

A voltage Vx applied to the x-electrodes induces a stress σ which is homogeneous
throughout the electrode, as sketched in Fig.A.1b. At the y-electrodes no external
stress occurs, since no voltage is applied to those electrodes. This applied inho-
mogeneous stress distribution throughout any cross section through the piezo tube
causes an elastic reaction (bending) of the tube, which results in a reaction stress τ
in the piezo tube material. The strain is zero in the middle of the y-electrodes and
is assumed to increase linearly along the bending direction x as shown in Fig.A.1b,
while it is constant along the y-direction perpendicular to the bending. The corre-
sponding stress τ also increases linearly with x and is shown in Fig.A.1b. We see
that σ and τ do not have the same values at each point as for the vertical stretching
along the z-axis (Fig.A.1a), but have different values across the piezo tube.

The sum σ + τ is also sketched in Fig.A.1b. What is now the equilibrium con-
dition? Let us consider the cross-section of the tube in Fig.A.1b as a lever rotating
about the center, on which the sum of the stresses Σ(x) = σ(x) + τ (x) is applied at
each point of the tube cross section. The equilibrium condition is now, as for a lever,
that the sum of all torques Σ · x applied to the lever has to vanish. The piezo exten-
sion induces a local torque σ(x) · x and the elastic response induces a local torque
τ (x) · x . The bending of the tube is in equilibrium if the integral of the total torque
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Σ · x over the whole cross section of the piezo tube vanishes. Now we perform this
integration.

Due to the symmetry of the problem, we limit the integration to the first quadrant
(Fig.A.1c). For the integration over the y-electrode (45◦ < θ < 90◦), σ is zero and

Σ(θ) = τ (θ) = τmax cos θ, (A.1)

where the variable x has been replaced by cos θ and τmax is the stress in the middle
of the x-electrode. For the integration over the x- electrode (0◦ < θ < 45◦), the total
stress can be written as

Σ(θ) = σ(θ) + τ (θ) = τmax cos θ − σmax, (A.2)

where σmax is the stress applied to the x-electrodes due to the applied voltages. With
this the equilibrium condition, i.e. the vanishing of the integral of the torque over the
tube quadrant, reads as

90◦∫

0

Σ(θ) cos θdθ

=
45◦∫

0

(τmax cos θ − σmax) cos θdθ +
90◦∫

45◦

τmax cos θ cos θdθ = 0. (A.3)

The evaluation of these integrals leads to the equilibrium condition

τmax = 2
√
2

π
σmax. (A.4)

Replacing σmax = Ed31�V/h and τmax = E�L/L , results in

�L = 2
√
2

π

d31L�V

h
. (A.5)

This result for the extension �L is smaller by a factor of about 0.9 than that for the
case where a “free” extension of the x-electrodes is considered (3.12), i.e. without
any “hindrance” by the straining of the y-electrodes. In this way, (3.13) finally results
for the horizontal piezo constant.
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Appendix B
Spectral Density, Spectrum and their
Experimental Calibration

The spectral density of a signal can be measured with a spectrum analyzer. Nowa-
days, stand alone spectrumanalyzer instruments (with all the calibration steps already
included) are less frequently used in favor of analogue to digital conversion of the
measured signal followedby a subsequent software discrete Fourier transform (DFT),
the correct calibration is no more “included” by the spectrum analyzer hardware.
Since the discrete Fourier transform just transforms n numbers to n new numbers,
the user has to take care about the necessary calibration steps. While this is straight-
forward in principle, it involves a number of non-trivial details. Here, we also include
the description of an experimental calibration procedure which gives an easy cross-
check for the correct calibration of the spectrum or spectral density.

If a continuous signal S(t) is sampledwith a sampling frequency fsample, this signal
is represented as a discrete time series S(k/ fsample). The discrete Fourier transform
(DFT) of a time series of length n is defined as

Ŝ(m) =
n−1∑
k=0

S(k/ fsample)e
−2πikm/n, (B.1)

withm = 0···n − 1. The power spectral density (termedPSD, or N 2
PSD) is proportional

to the absolute square of the discrete Fourier transform (DFT) [1]. If we do not
consider windowing yet (i.e consider a rectangular window) [2, 3], the PSD results
as

N 2
PSD(m) = 2

fsample n

∣∣∣Ŝ(m)

∣∣∣2 , m = 0···n/2. (B.2)

Here we consider the single sided PSD in which onlym = 0···n/2, with n being even
are considered (positive frequencies). Note that other definitions of the DFT than
the one in (B.1) result in other factors in (B.2) [2]. The spectral density NPSD is the
square root of the power spectral density N 2

PSD.
For a continuous signal the power spectral density of a signal is related, via

Parseval’s identity, to the root mean square (RMS) SRMS of the signal as
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S2RMS = lim
T→∞

1

T

T∫

0

S2(t) dt ≡ 〈
S2(t)

〉 =
∞∫

0

N 2
PSD( f ) d f. (B.3)

If the signal is a discrete time series, the continuous quantities S(t) and NPSD( f )
translate to discrete values as

S(t) ↔ S(k/ fsample) and NPSD( f ) ↔ NPSD(m fres), (B.4)

respectively with k = 0···n − 1, and m = 0···n/2. The width of the n frequency bins
of the DFT is given by fres = fsample/n [2]. For a discrete signal (B.3) translates to

S2RMS = 1

T

n−1∑
k=0

S2(k/ fsample)/ fsample

=
n/2∑
m=0

N 2
PSD(m fres) fres. (B.5)

In the following we consider two simple examples for the power spectral density,
a constant power spectral density (Fig.B.1a) and a power spectral density of a tonal
sinusoidal signal (Fig.B.1b).

Spectral density. If the power spectral density of the signal is considered within
a certain frequency bandwidth B = f2 − f1 between f1 and f2 (as indicated by the
blue shaded area in Fig.B.1a), the power spectral density is zero outside the range
of the bandwidth B. We assume further that fres � B, which is usually the case. If
the power spectral density is constant for the j bins between f1 and f2, the N 2

PSD

f

(a) (b)

f1 f2 f0

NPSD
2

f

NPSD
2

fres f res

f res
´

B = j fres

Fig. B.1 a Case of a constant power spectral density within B (blue shaded area). The DFT
representation of the power spectral density has j (same) values with a frequency bin with of
fres = fsample/n. In this case the power spectral density is independent of the width of the frequency
bin of the DFT, fres (c.f. (B.6)), while the power spectrum depends on the bin width (c.f. (B.10)).
b Power spectral density of a tonal signal (sinusoidal), which has a non vanishing value only in
one frequency bin. In this case DFT representation of the power spectral density depends on the
frequency bin with fres (c.f. (B.7)), while the power spectrum is independent of the bin width
(c.f. (B.9))
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in (B.5) can be written in front of the sum and the sum yields j · fres = B. Thus, for
a constant PSD (B.5) results in

N 2
PSD = S2RMS

B
. (B.6)

If for example the signal is a voltage, e.g. of RMS amplitude SRMS = 1V, and B =
100Hz, a spectral density of NPSD = 0.1V/

√
Hz results. In this case the (power)

spectral density is independent of the width of the frequency bins. This case is
desirable as the value of the (power) spectral density has a significance independent
of the width of the frequency bins, i.e. independent of details of the sampling.

For the case of a tonal (sinusoidal) signal the situation is different. For the sake
of simplicity we consider cases without spectral leakage present [3]. Then the tonal
signal is usually located within a single non-zero frequency bin of width fres at a
frequency ft , as shown in Fig.B.1b. In this case only one term of the sum in (B.5)
survives and the (power) spectral density of this bin depends (undesirably) on the
width of the frequency bins fres, as

N 2
PSD( fres) = S2RMS

fres
. (B.7)

This means that for instance a tonal signal with an RMS amplitude of 1V results in
different values for the (power) spectral density, depending on the width of the fre-
quency bins fres, as also shown in Fig.B.1b for two different values of the frequency
bin width fres and f ′

res, respectively. This dependence of the value of the (power)
spectral density on the frequency bin width fres, which depends on the particular
length of the time series used for the DFT and the particular sampling rate, is of
course undesirable. Thus, the value of the (power) spectral density for a tonal signal
has no unique significance without the knowledge of some details on the sampling
process, such as the sampling rate fsample and the length n of the DFT.

Spectrum. A different quantity, the power spectrum N 2
spec, or the spectrum Nspec,

defined as
N 2
spec ≡ N 2

PSD · fres, (B.8)

avoids this disadvantage. When inserting (B.7), valid for a tonal signal, into (B.8),
the (power) spectrum of a tonal signal turns out to be independent of the width of
the frequency bin, as

N 2
spec = S2RMS. (B.9)

As (B.9) shows, the value of the spectrum is equal to the RMS amplitude of the tonal
(sinusoidal) signal, Nspec = SRMS (e.g. 1V).

However, undesirably for a signal of constant (power) spectral density, the spec-
trum Nspec depends on the width of the frequency bin fres, as evident when insert-
ing (B.6) into (B.8), resulting in
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N 2
spec = S2RMS

B
fres. (B.10)

In conclusion, neither the (power) spectral density, nor the (power) spectrum
deliver a value which is independent of the frequency bin for a tonal signal as well as
for signal with constant PSD (representative of a broad band signal with a relatively
flat PSD). A solution of this dilemma would be to choose the width of the frequency
bin fres = 1Hz, so that both, the spectral density and the spectrum have the same
numeric value (but still different units, e.g. V/

√
Hz and V, respectively). However,

if low frequencies approaching 1Hz and below are of interest, a frequency bin with
of 1Hz is too wide.

So far we have not considered the windowing in the DFT [3], which means we
have so far implicitly considered a rectangular window function. When applying
other window functions in the DFT, a quantity named “normalized equivalent noise
bandwidth” (NENBW) can be defined and (B.8) is extended with f effres to

N 2
spec ≡ N 2

PSD · f effres = N 2
PSD · fres · NENBW. (B.11)

In order to present the complete information of a spectral analysis, both the (power)
spectral density, as well as the (power) spectrum have to be presented, or one of them
and f effres .

In the signal processing from the time series of the signal to the spectral density or
spectrum several proportionality factors are involved due to the use of, for example,
either RMS amplitude or peak amplitude, either two-sided spectrum or single-sided
spectrum, either natural frequency PSD or angular frequency PSD, or due to different
window types, etc. So one has to consider all these factors carefully. Complementary
also an experimental calibration of spectral density or spectrum is very desirable and
will be considered in the following.

A tonal signal e.g. from a signal generator can be used to calibrate the spectrum or
the spectral density. According to (B.9) the RMS signal amplitude of a tonal signal
corresponds directly to the amplitude of the spectrum Nspec, independent of the width
of a frequency bin. For the calibration of the power spectral density using a tonal
signal, the effective width of a frequency bin enters. According to (B.7) (extended
to f effres ), the RMS signal amplitude of a tonal signal S2RMS has to be divided by f effres
in order to obtain the power spectral density.

Alternatively to a calibrationwith a tonal signal a signal of constant power spectral
density (white noise) and known amplitude can be used for the calibration. Such a
signal is provided for instance by the Johnson-Nyquist noise (thermal noise) of a
resistor R as as voltage source of known RMS voltage

URMS
JN = √

4 kB T R B, (B.12)

and constant PSD (white noise spectrum). The bandwidth B in (B.12) corresponds
to the effective width of a frequency bin of the DFT as B = f effres . In order to obtain a
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reasonably large voltage, a resistor of large resistance should be used (R ≥ 500 k�)
and considered in parallel with the input resistance of the measurement device.

In conclusion, if a case of a spectral analysis includes tonal peaks, as well as
(locally) constant regions as function of frequency, both the spectrum, and the spectral
density are required in order to deliver quantitative results for tonal peaks and broad
band regions. The tonal peaks are represented quantitatively in the spectrum (e.g. in
volts), while constant regions are represented quantitatively in the spectral density
(e.g. as V/

√
Hz). Spectrum and spectral density can be converted into each other by

the proportionality factor
√

f effres = √
( fsample/n) · NENBW.
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Appendix C
Corrections to the Thermal Method

In the following,wewill present several corrections (going beyond the approximation
of the cantilever as a simple harmonic oscillator) which have to be applied for a more
exact determination of the force constant by the thermal method. We consider the
most important case of rectangular cantilevers.

For an ideal harmonic oscillator represented in Fig.C.1a by a mass and a spring,
the expression (11.21) holds. However, a real rectangular cantilever beam (Fig.C.1b)
also has higher modes of oscillation. The first four modes of a free cantilever beam
are shown in Fig.C.1c. For each higher mode one more node appears in the shape
of the vibration modes. Each mode can be considered as a harmonic oscillator for
which the equipartition theorem holds, i.e. each mode is thermally excited by kBT .
Thus, in analogy to the ideal harmonic oscillator a (dynamic) spring constant ki of
the mode i can be defined by the relation

1

2
ki

〈
�z2th,i

〉 = 1

2
kBT, (C.1)

with
〈
�z2th,i

〉
being the mean square deflection arising from the i th mode. This mean

square deflection can be calculated [1] as

〈
�z2th,i

〉 = kBT

k

12

α4
i

= kBT

ki
, (C.2)

with the values of αi (α1 = 1.88,α2 = 4.69, and α3 = 7.85) and correspondingly
the (dynamic) spring constant ki for each mode given in [1]. The spring constant
for the first mode has been calculated as k1 = k/0.971. While each mode is excited
with the thermal energy kBT , the spring constants for the higher modes increase
significantly. Thus the thermally excited deflection for higher modes becomes very
small. Since the thermal excitation of the different modes are independent, the total
mean square thermal amplitude is the sum over the mean square amplitudes of all

© Springer Nature Switzerland AG 2019
B. Voigtländer, Atomic Force Microscopy, NanoScience
and Technology, https://doi.org/10.1007/978-3-030-13654-3

319

https://doi.org/10.1007/978-3-030-13654-3_11
https://doi.org/10.1007/978-3-030-13654-3


320 Appendix C: Corrections to the Thermal Method

0.0 0.2 0.4 0.6 0.18.0

m

k

k1

k2

k3

k4

(a)

(b)

x/L

A
m

pl
itu

de

(c)

L

x
yz

w

h

Fig. C.1 a Ideal one-dimensional harmonic oscillator represented by a mass m on a spring with
spring constant k. b Sketch of a cantilever-type beam. c The first four modes of a rectangular
cantilever. A (dynamic) spring constant ki can be assigned to each mode

modes1
〈
�z2th

〉 = ∑∞
0

〈
�z2th,i

〉
. It has been calculated that

∑∞
0 ki

〈
�z2th,i

〉 = k
〈
�z2th

〉
and (11.21) is also recovered for a rectangular cantilever beam with the “static”
spring constant k for a rectangular beam from (11.17) [1]. From (11.21) and (C.1) it
results that

〈
�z2th,1

〉 = 0.971
〈
�z2th

〉
, which means that the first mode already contains

97% of the total energy of the oscillating cantilever.
In the following, we discuss how the spring constant k can be obtained from

the thermal deflection noise of the first cantilever mode. When measuring the can-
tilever deflection voltage �Vsensor(t) and the corresponding deflection �z(t) =
�Vsensor(t)Ssensor, generally deflection contributions from all modes enter into the
RMS deflection signal. The Fourier transformation of the square of the time-

1Itmight be feared that this infinite summight lead to an infinite total amplitude. However, the spring
constants of the higher modes turn out to be very large. Thus, the corresponding thermal oscillation
amplitudes become very low and it is generally well known that an monotonously increasing series
can have a finite limit.
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dependent noise signal is proportional to the noise power spectral density N 2
z,th( f ),

as introduced in Chap.5. The noise spectral density is Nz,th( f ) =
√
N 2
z,th( f ). In the

following, we assume that the noise power spectral density has been measured (by
Fourier transformation of the time signal) using a spectrum analyzer.2 The thermal
noise power spectral density as a function of frequency consists of several resonance
type peaks, one for each mode at the resonance frequency of the mode. We will
extract the spring constant from the strength of the deflection noise of the first mode.
In Chap.17 it was shown that the thermal noise spectral density of the first mode of
a cantilever can be written (after the subtraction of a constant background, arising
e.g. from electrical noise) as

N 2
z,th,1 = N 2

z,th,excG
2( f ) = N 2

z,th,exc(
1 − f 2

f 20,1

)2 + 1
Q2

1

f 2

f 20,1

, (C.3)

with N 2
z,th,exc being thewhite noise arising from the thermal excitation, i.e. frequency-

independent. From a fit of this function to the experimentallymeasured noise density,
the parameters N 2

z,th,exc, Q1, and f0,1 can be determined. The integral over G2( f )
can be calculated and results as πQ1 f0,1/2 (compare Sect. 17.1). Thus, using (C.1)
the following additional relation results

〈
�z21

〉 =
∞∫

0

N 2
z,th,1( f )d f = N 2

z,th,exc
πQ1 f0,1

2
= kBT

k1
. (C.4)

With this, the spring constant of the first mode results as

k1 = 2kBT

πN 2
z,th,excQ1 f0,1

. (C.5)

Finally, the spring constant k can be obtained as k = 0.971k1. Importantly, this ther-
mal method for the determination of the spring constant of the sensor can also be
used for other types of sensors than the cantilever beams, for instance quartz sen-
sors, discussed in Sect. 18.3. If the cantilever spring constant is known from other
sources, (C.4) can be used to determine the thermal oscillation amplitude

〈
�z21

〉
and

thus SSensor.
There is another correction which has to be made. The sensitivity SSensor, which

converts the sensor voltage signal to the sensor deflection, was obtained by bending
the cantilever via a force applied to the end of the cantilever (Fig. 11.6). However,
the thermal method for the spring constant determination is performed with a freely
oscillating cantilever. It has been shown that the shapes of the cantilever deflection
are slightly different in the two cases [1, 3, 4, 5]. Moreover, for the case of the laser

2Details of how to extract the noise power spectral density from the time signal without using a
spectrum analyzer are given in [2] and in AppendixB.
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beam deflection method, the relevant quantity is not the deflection itself, but the
slope of the cantilever �z′(x). The slopes for a free cantilever and the end-loaded
cantilever can be calculated. The sensitivity measured for an end-loaded cantilever
Ssensor,end has to be replaced by a corrected sensitivity χ Ssensor,end with the correction
factor

χ = Ssensor,free,calc
Ssensor,end,calc

= �z′
free,calc

�z′
end,calc

. (C.6)

Thus, the desired sensitivity factor for the free cantilever needed for the thermal
method is given by

Ssensor,free = Ssensor,end,measured
Ssensor,free,calc
Ssensor,end,calc

= χ Ssensor,end,measured. (C.7)

For the case of an infinitely small laser spot at the end of the cantilever, χ = 1.09
has been calculated. For the cases in which the diameter of the laser spot on the
cantilever is finite, and the laser is focused onto a location different from the end of
the cantilever, the correction factor χ can be found in a graph shown in Fig. 5 of [5].3
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Appendix D
Frequency Noise in FM Detection

Here we describe how an amplitude noise of an oscillation gives rise to a correspond-
ing frequency noise. We start by describing some basic principles of the frequency
modulation technique applied to our cantilever example as described in [1].

The oscillation of the cantilever at its shifted resonance frequency ω′
0 is written

(neglecting an offset phase) as

z(t) = A sin(ω′
0t). (D.1)

In the following, we consider the modulation of this carrier oscillation at ω′
0 with a

modulation frequency ωmod. Such a modulation of the cantilever oscillation can be
considered to arise from a modulation of the cantilever resonance frequency due to a
signal, e.g. by an (atomic) corrugation giving rise to a modulation with a (frequency)
amplitude �ω which we call here ω� at a frequency ωmod due to scanning. In the
PLL FM demodulator the magnitude and frequency of the signal component are
extracted.

In the following we will consider that a frequency modulation of the carrier signal
arises due to a (sinusoidal) noise component with frequencyωmod, resulting in a time-
dependent modulated frequency

ω(t) = ω′
0 + ω� cos(ωmodt), (D.2)

with ω� being the frequency deviation, i.e. the maximum shift away from ω′
0. Since

ω is no longer constant, the phase (i.e. the argument of the sinusoidal oscillation
cannot bewritten asφ = ωt , but has to bewritten as an integral over the instantaneous
angular frequencyφ = ∫

ω(t)dt .With this the oscillation coordinate can bewritten as

z(t) = A sin

(∫
ω(t)dt

)
= A sin

(
ω′
0t + ω�

ωmod
sin (ωmodt)

)
. (D.3)

This expression can be written as an infinite sum over Bessel functions. However, in
the limit that ω� � ωmod, the oscillation of the cantilever can be approximated as
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z(t) = A sinω′
0t + Aω�

2ωmod

(
sin

[(
ω′
0 + ωmod

)
t
] − sin

[(
ω′
0 − ωmod

)
t
])

. (D.4)

This corresponds to an oscillation at the resonance frequency ω′
0 and two side bands

at the frequencies ω′
0 ± ωmod. In the following, we consider a displacement noise

component at frequency ω′
0 + ωmod. The term Aω�/(

√
22ωmod) corresponds to a

(RMS) displacement noise amplitude which is renamed δA+. Thus, the cantilever
oscillation can be written as

z(t) = A sinω′
0t + √

2δA+ sin
[(

ω′
0 + ωmod

)
t + φ0

]
. (D.5)

Using the mathematical identity sin (α + β) = sinα cosβ + cosα sin β, the follow-
ing expression results

z(t) = A sinω′
0t

[
1 +

√
2δA+
A

cos (ωmodt + φ0)

]

+ √
2δA+ cosω′

0t sin (ωmodt + φ0) . (D.6)

Since δA+ � A, the second term in the square brackets can be neglected, which
results in

z(t) = A sinω′
0t cos

(√
2δA+
A

sin (ωmodt + φ0)

)

+ A cosω′
0t sin

(√
2δA+
A

sin (ωmodt + φ0)

)
. (D.7)

In order to apply the above-mentioned identity for trigonometric functions in the

next step, we included the factor cos
√
2δA+
A (ωmodt + φ0), which is very close to one,

since δA+ � A. Further, we also replaced the small term
√
2δA+
A sin (ωmodt + φ0)

by its sinus. Due to this we can apply the above-mentioned identity in the reverse
direction, which results in

z(t) = A sin

(
ω′
0t +

√
2δA+
A

sin (ωmodt + φ0)

)
. (D.8)

This means that an RMS displacement noise δA+ at the frequency ω′
0 + ωmod trans-

lates into a phase noise of RMS amplitude δA+/A at the frequency ωmod. The instan-
taneous frequency ω(t) is the time derivative of the phase and can be written as

ω(t) = ω′
0t +

√
2δA+
A

ωmod cos (ωmodt + φ0) . (D.9)
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Thus, the RMS displacement noise δA+ at the frequency ω0 + ωmod translates into
a RMS frequency noise δω+, as

δω+ = ωmod

A
δA+ or δ f+ = fmod

A
δA+, (D.10)

correspondingly for the natural frequencies.
If we additionally consider a second independent noise component of the same

magnitude from the lower side band at ω′
0 − ωmod, the frequency noise has to be

multiplied by
√
2. While we here explicitly consider the amplitudes of displacement

noise and frequency noise the reasoning can also be applied to the spectral noise
densities, resulting in

N f ( fmod) =
√
2 fmod

A
Nz( f0 + fmod), (D.11)

where Nz( f0 + fmod) is the spectral displacement noise density around f0 and
N f ( fmod) is the demodulated spectral frequency noise density.
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